
Introduction
to

Design & Analysis of Algorithms - In Simple Way

K. Raghava Rao B.E.,M.Tech.,Ph.D(CSE)

Professor in CSE & Research Group Head –Sensor Networks
K L University, Guntur.

CONTENTS

Preface

Acknowledgement

CHAPTERS

1. Introduction 1

2. Divide and Conquer
20

3. Greedy Method 41

4. Dynamic Programming 64

5. Basic Traversal and Search Techniques 82

6. Back Tracking 99

7. Dynamic Programming 109

8. Branch and Bound 125

 PREFACE

This book provides a complete information to the modern study of computer algorithms. It
presents many algorithms and covers every concept in a considerable depth, so that it can be
understand by all levels of readers. Each and every concept is explained by a suitable
examples. This text book is intended primarily for use in undergraduate or graduate courses
in algorithms or data structures. Because it discusses engineering issues in algorithm design,
as well as mathematical aspects, it is equally well suited for self-study by technical
professionals.

Chapter 1: This chapter deals with basic concepts in a step-by-step manner.

Chapter 2: In this chapter discussed about Divide and Conquer method with examples.

Chapter 3: This chapter deals with Greedy methods and various problems related to greedy
method.

Chapter 4: This chapter deals with Dynamic Programming, different types of graphs related
problems.

Chapter 5: Various types of traversal and searching techniques are discussed in this chapter.

Chapter 6: This chapter deals with backtracking methods, queens problem, Hamiltonian
cycles, knapsack problems.

Chapter 7: This chapter deals with Branch and Bound algorithms, Travelling salesman
problems, 15-puzzle problems.

Chapter 8: This chapter deals with NP hard and NP complete problems.

ACKNOWLEDGEMENT

Foremost inner inspiration and driving force of writing this book is our Honorable President,

Er. Koneru Satyanaryana, KL University. Also thankful to my senior Colleague, Professor

Dr. K. Rajashekara Rao, Dean, Administration, KL University and Heads of Departments of

CSE and ECM Dr. V.Srikanth and Dr. S.Balaji& Prof. Venkatram and my special thanks to

Prof. S.Venkateswarlu,A/Dean(P&D).

I would like to express my sincere thanks to all those motivated and helped in preparing

content topic wise of this book directly and indirectly. I am very much thankful to

A.V.Surendra Kumar, Junior Research Fellow Scholar for his best efforts in making this

book in present form. Some of my PG students who did great job in ordering the content and

preparation of text and images design.

 Autho
r

 Chapter-1
Introduction

1. 1 what is Algorithm?

It is any well-defined computational procedure that takes some value, or set of values, as
input and produces some value, or set of values, as output. It is thus a sequence of
computational steps that transform the input into the output. It is a tool for solving a well -
specified computational problem.

Algorithm must have the following criteria:

Input: Zero or more quantities is supplied

Output: At least one quantity is produced.

Definiteness: Each instruction is clear and unambiguous.

Finiteness: If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

Effectiveness: Every instruction must be basic so that it can be carried out.

1.2 What is program? Why DAA?

A program is the expression of an algorithm in a programming language. A set of instructions
which the computer will follow to solve a problem.
It is learning general approaches to algorithm design.

Divide and conquer
Greedy method
Dynamic Programming
Basic Search and Traversal Technique
Graph Theory
Branch and Bound
NP Problems

1.3 Why do Analyze Algorithms?

To examine methods of analyzing algorithm
Correctness and efficiency

-Recursion equations
-Lower bound techniques
-O,Omega and Theta notations for best/worst/average case analysis

Decide whether some problems have no solution in reasonable time
-List all permutations of n objects (takes n! steps)
-Travelling salesman problem

Investigate memory usage as a different measure of efficiency.

1.4 Importance of Analyzing Algorithms

Need to recognize limitations of various algorithms for solving a problem. Need to
understand relationship between problem size and running timeWhen is a running program
not good enough? Need to learn how to analyze an algorithm's running time without coding
it. Need to learn techniques for writing more efficient code. Need to recognize bottlenecks in
code as well as which parts of code are easiest to optimize.

1.4.1 The Selection Problem

Problem: given a group of n numbers, determine the kth largest
Algorithm 1

Store numbers in an array
Sort the array in descending order
Return the number in position k

Algorithm 2
Store first k numbers in an array
Sort the array in descending order
For each remaining number, if the number is larger than the kth number, insert the
number in the correct position of the array
Return the number in position k

Example
Input is a sequence of integers stored in an array.
 Output the minimum.

INPUT INSTANCE ALGORITHM OUTPUT

 25, 90, 53, 23, 11, 34 11

Problem: Description of Input-Output relationship.
Algorithm: A sequence of computational step that transform the input into the output.
Data Structure: An organized method of storing and retrieving data.
Our task: Given a problem, design a correct and good algorithm that solves it.

Example Algorithm A
Problem: The input is a sequence of integers stored in array.

 Output the minimum.

m

Algorithm:

Example Algorithm B

This algorithm uses two temporary arrays.
1. copy the input a to array t1;
 assign n ← size of input;
2. While n > 1
 For i ← 1 to n /2

 t2[i] ← min (t1 [2*i], t1[2*i + 1]);
 copy array t2 to t1;

 n ←n/2;
3. Output t2[1];

Visualize Algorithm B

34 6 5 9 20 8 11 7

Example Algorithm C
Sort the input in increasing order. Return the first element of the sorted data.

Introduction: Example Algorithm D
For each element, test whether it is the minimum.

1.5 Time vs. Size of Input

Measurement parameterized by the size of the input. The algorihtms A,B,C are implemented
and run in a PC. Algorithms D is implemented and run in a supercomputer. Let Tk(n) be the
amount of time taken by the Algorithm.

1.5.1 Methods of Proof

(a) Proof by Contradiction

Assume a theorem is false; show that this assumption implies a property known to be true is
false --therefore original hypothesis must be true

(b) Proof by Counter example

Use a concrete example to show an inequality cannot hold. Mathematical Induction. Prove a
trivial base case, assume true for k, and then show hypothesis is true for k+. Used to prove
recursive algorithms

(c) Proof by Induction

Claim: S (n) is true for all n >= k

Basis: Show formula is true when n = k

Inductive hypothesis: Assume formula is true for an arbitrary n

Step: Show that formula is then true for n+1

Examples

Gaussian Closed Form

Prove 1 + 2 + 3 + … + n = n (n+1) / 2
Basis: If n = 0, then 0 = 0 (0+1) / 2
Inductive hypothesis: Assume 1 + 2 + 3 + … + n = n (n+1) / 2
Step (show true for n+1): 1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)

 = n (n+1)/2 + n+1 = [n (n+1) + 2(n+1)]/2
 = (n+1) (n+2)/2 = (n+1) (n+1 + 1) / 2

Geometric Closed Form

Prove a0+ a1+ … + an= (an+1-1) / (a -1) for all a 1
Basis: show that a0= (a0+1-1) / (a -1)
 a0= 1 = (a1-1) / (a -1)
Inductive hypothesis: Assume a0+ a1+ … + an= (an+1-1) / (a -1)
Step (show true for n+1): a0+ a1+ … + an+1= a0+ a1+ … + an+ an+1
 = (an+1-1) / (a -1) + an+1= (an+1+1-1) / (a -1)

Strong induction also holds

Basis: show S (0)

Hypothesis: assume S (k) holds for arbitrary k <= n

Step: Show S (n+1) follows

Another variation

 Basis: show S (0), S (1)

 Hypothesis: assume S (n) and S (n+1) are true

 Step: show S (n+2) follows.

1.6 Basic Recursion

Base case: value for which function can be evaluated without recursion
Two fundamental rules:-
1. Must always have a base case

2. Each recursive call must be to a case that eventually leads toward a base case

Problem: Write an algorithm that will strip digits from an integer and print them out one by
one

void print_out(int n)
if(n < print_digit(n); /*outputs single-digit to terminal*/
else
print_out (n/); /*print the quotient*/
print_digit (n %); /*print the remainder*/

Prove by induction that the recursive printing program works:
Basis: If n has one digit, then program is correct.

hypothesis: Print_out works for all numbers of k or fewer digits

case k+: k+ digits can be written as the first k digits followed by the least significant digit

The number expressed by the first k digits is exactly floor (n /)? Which by hypothesis prints
correctly; the last digit is n%; so the (k+)-digit is printed correctly. By induction, all numbers
are correctly printed.

Recursion is expensive in terms of space requirement; avoid recursion if simple loop will do
Last two rules
Assume all recursive calls work
Do not duplicate work by solving identical problem in separated recursive calls
Evaluate fib () --use a recursion tree

Fib (n) = fib (n-1) + fib (n-2)

1.7 Algorithm Analysis and Running Time

How to estimate the time required for an algorithm. Techniques that drastically reduce the
running time of an algorithm. A mathematical framework that more rigorously describes the
running time of an algorithm.

Running time for small inputs

Running time for moderate inputs

Algorithm Analysis

Measures the efficiency of an algorithm or its implementation as a program as the input size
becomes very large. We evaluate a new algorithm by comparing its performance with that of
previous approaches. Comparisons are asymtotic analyses of classes of algorithms. We
usually analyze the time required for an algorithm and the space required for a data structure.

 Many criteria affect the running time of an algorithm, including

-speed of CPU, bus and peripheral hardware
-design think time, programming time and debugging time
-language used and coding efficiency of the programmer
-quality of input (good, bad or average)
-Machine independent
-Language independent
-Environment independent (load on the system)
-Amenable to mathematical study
-Realistic

In lieu of some standard benchmark conditions under which two programs can be run, we
estimate the algorithm's performance based on the number of key and basic operations it
requires to process an input of a given size. For a given input size n we express the time T to
run the algorithm as a function T (n). Concept of growth rate allows us to compare running
time of two algorithms without writing two programs and running them on the same
compute. Formally, let T (A, L, M) be total run time for algorithm A if it were implemented
with language L on machine M. Then the complexity class of algorithm A is O (T(A, L, M)
U O(T(A, L, M)) U O(T(A, L, M)) .

Call the complexity class V; then the complexity of A is said to be f if V = O (f).The class of
algorithms to which A belongs is said to be of at most linear/quadratic/ etc. The growth in
best case if the function TA best(n) is such (the same also for average and worst case).

1.8 Asymptotic Performance

Asymptotic performance means it always concerns with how does the algorithm behave as
the problem size gets very large? Running time, Memory/storage requirements, and Band
width/power requirements/logic gates/etc.

Asymptotic Notation

By now you should have an intuitive feel for asymptotic (big-O) notation:
What does O (n) running time mean? O (n2)? O (n log n).?
How does asymptotic running time relate to asymptotic memory usage?.
Our first task is to define this notation more formally and completely.

Analysis of Algorithms

Analysis is performed with respect to a computational model we will usually use a generic
uni processor random-access machine (RAM).

All memory equally expensive to access.

No concurrent operations.

All reasonable instructions take unit time.

 Ex: Except, of course, function calls

Constant word size

Ex: Unless we are explicitly manipulating bits

Input Size

Time and space complexity. This is generally a function of the input size.
 E.g., sorting, multiplication

How we characterize input size depends:
Sorting: number of input items

Multiplication: total number of bits

Graph algorithms: number of nodes & edges

Running Time

Number of primitive steps that are executed. Except for time of executing a function call
most statements roughly require the same amount of time.

 y = m * x + b

 c = 5 / 9 * (t -32)

 z = f(x) + g(y)

Analysis

Worst case provides an upper bound on running time. An absolute guarantee
Average case provides the expected running time random (equally likely) inputs.

Function of Growth rate

1.9 Space Complexity (S (P)=C+SP(I))

Fixed Space Requirements (C) Independent of the characteristics of the inputs and outputs
instruction space. Space for simple variables, fixed-size structured variable, constants.
Variable Space Requirements (SP(I))depend on the instance characteristic I–number, size,
values of inputs and outputs associated with recursive stack space, formal parameters, local
variables, return address.

Program: Simple arithmetic function
float abc (float a, float b, float c)
{
return a + b + b * c + (a + b -c) / (a + b) + 4.00;
}

Program: Iterative function for summing a list of numbers.

float sum(float list[], int n)
{
float tempsum = 0;
int i;
for (i = 0; i<n; i++)
tempsum += list [i];return tempsum;
}
Sabc(I) = 0
Ssum(I) = 0

Recall: pass the address of the first element of the array & pass by value.

Program: Recursive function for summing a list of numbers.

 float rsum(float list[], int n)
 {
 if (n) return rsum(list, n-1) + list[n-1];
return 0;
 }

Ssum(I)=Ssum(n)=6n

Assumptions

Space needed for one recursive call of

Type Name Number of bytes

parameter: float
parameter: integer
return address:(used
internally)

List[n]
N

2
2
2

TOTAL per recursive call 6

1.10 Time Complexity

• Compile time (C) : Independent of instance characteristics.

• Run (execution) time TP

Definition: TP (n) = caADD(n) + csSUB(n) + clLDA(n) + cstSTA(n)
A program step is a syntactically or semantically meaningful program segment whose
execution time is independent of the instance characteristics.

Example

abc = a + b + b * c + (a + b -c) / (a + b) + 4.0

abc = a + b + c

Methods to compute the step count

• Introduce variable count into programs

• Tabular method

Determine the total number of steps contributed by each statement step per execution ×
frequency

add up the contribution of all statements

Program: Iterative summing of a list of numbers:

float sum(float list[], int n)
{
float tempsum = 0;
count++; /* for assignment */
int i;
for (i = 0; i < n; i++)
{
count++; /*for the for loop */
tempsum += list[i];
count++; /* for assignment */}
count++; /* last execution of for */
return tempsum;
count++; /* for return */
}

2n + 3 steps

Program: Simplified version of Program

float sum(float list[], int n)
{

float tempsum = 0;
int i;
for (i = 0; i < n; i++)
count += 2;
count += 3;
return 0;
}

2n + 3 steps

Program : Recursive summing of a list of numbers

float rsum(float list[], int n)
{
count++; /*for if conditional */
if (n)
{
count++; /* for return and rsum invocation */
return rsum(list, n-1) + list[n-1];
}
count++;
return list[0];
}

2n+2 times

Program : Matrix addition

void add(int a[] [MAX_SIZE], int b[] [MAX_SIZE],int c [] [MAX_SIZE], int rows, int
cols)
{
int i, j;
for (i = 0; i < rows; i++)
for (j= 0; j < cols; j++)
c[i][j] = a[i][j] +b[i][j];
}

Matrix addition with count statements:

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],int c[][MAX_SIZE], int row, int cols)
{
int i, j;
for (i = 0; i < rows; i++) (2rows * cols + 2 rows + 1)
{
count++; /* for i for loop */
for (j = 0; j < cols; j++)
 {
count++; /* for j for loop */
c[i][j] = a[i][j] + b[i][j];
count++; /* for assignment statement */}
count++; /* last time of j for loop */

}
count++; /* last time of i for loop */
}

Program: Simplification of Program

void add(int a[][MAX_SIZE], int b [][MAX_SIZE],int c[][MAX_SIZE], int rows, int cols)
{
int i, j;for(i = 0; i < rows; i++)
{
for (j = 0; j < cols; j++)
count += 2;
count += 2;
 }
count++;
}

2rows cols + 2rows +1 times

Tabular Method

Step count table
Iterative function to sum a list of numbers
Statement s/e Frequency Total steps
float sum(float list[], int n)
 {
 float tempsum = 0;
 int i;
 for(i=0; i <n; i++)
 tempsum += list[i];
return tempsum;
 }

0 0 0
0 0 0
1 1 1
0 0 0
1 n+1 n+1
1 n n
1 1 1
0 0 0

TOTAL 2n+3

Step count table for recursive summing function

Statement s/e Frequency Total steps

float rsum(float list[], int n)
{
 if (n)
return rsum(list, n-1)+list[n-1];
 return list[0];
 }

0 0 0
0 0 0
1 n+1 n+1
 1 n n
 1 1 1
 0 0 0

TOTAL 2n+3

Matrix Addition

Step count table for matrix addition
Statement s/e Frequency Total steps

Void add (int a[][MAX_SIZE]‧ ‧ ‧)
{
 int i, j;
 for (i = 0; i < row; i++)
 for (j=0; j< cols; j++)
 c[i][j] = a[i][j] + b[i][j];
 }

 0 0 0
 0 0 0
 0 0 0
 1 rows+1 rows+1
1 rows‧ (cols+1) rows‧ cols+rows
1 rows‧ cols rows‧ cols

 0 0 0

TOTAL 2 rows‧ cols+2rows+1

1.11 Asymptotic Notation (Q, O, W, o, w)

Defined for functions over the natural numbers.
 Ex: f (n) = Q (n2).

Describes how f (n) grows in comparison to n2. Define a set of functions; in
practice used to compare two function sizes. The notations describe different rate-of-growth
relations between the defining function and the defined set of functions.

(a) Θ notation

For function g (n), we define (g (n)), big-Theta of n, as the set:

 Θ (g (n)) = { f(n) :∃ positive constants c1, c2, and n0,such that ∀n>= n0, we have 0<=
c1g(n)<= f(n)<=c2g(n) }

Intuitively:

 Set of all functions that have the same rate of growth as g (n). g (n) is an asymptotically
tight bound for f(n).

For function g (n), we define (g(n)), big-Theta of n, as the set:

Θ (g (n)) = {f(n) : positive constants c1, c2, and n0,such that ∀ n>= n0,
we have 0 <=c1g(n)< f(n)<=c2g(n) }

F (n) and g (n) are nonnegative, for large n.

3n+2 = Θ (n) as 3n+2>=3n for all n>=2 and 3n+2<=4n for all n>=2
So c1=3 and c2=4and n0=2. So, 3 n+3= Θ (n),
10n2+4n+2= Θ (n2), 6*2n+n2= Θ (2n) and
 10*log n+4= Θ (log n).3n+2# Θ (1),
3n+3# Θ (n2), 10n2+4n+2# Θ (n), 10n2+4n+2# Θ (1)

(b)O-notation

For function g (n), we define O (g(n)), big-O of n, as the set:

O(g(n)) ={f(n) : positive constants c and n0,such that n>= n0, we have0<= f(n)<=cg(n) }

Intuitively: Set of all functions whose rate of grow this same as or lower than that of g (n).
 G (n) is an asymptotic upper bound for f(n).
f (n) = Θ (g(n)) ⇒f(n) = O(g(n)).Θ (g (n))⊂ O (g (n)).

Example- 1

7n-2
7n-2 is O (n)
need c > 0 and n01 such that7n-2 c• n for n n0
this is true for c = 7 and n0= 1

Example - 2

3n3+ 20n2+ 5
3n3+ 20n2+ 5 is O (n3)
need c > 0 and n01 such that3n3+ 20n2+ 5 c•n3for n n0
this is true for c = 4 and n0= 21

Example: 3
3 log n + log log n
3 log n + log log n is O (log n)
need c > 0 and n01 such that3 log n + log log n c• log n for n n0
this is true for c = 4 and n0= 2

 Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function. The
statement “f (n) is O (g (n))” means that the growth rate of f(n) is no more than the growth
rate of g(n). We can use the big-Oh notation to rank functions according to their growth rate.

f(n)) is O (g(n)) g(n) is O(f(n))
g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

Big-Oh Rules

If is f (n)a polynomial of degree d, then f(n)is O(nd), i.e.,
1. Drop lower-order terms
2. Drop constant factors
 Use the smallest possible class of functions Say “2n is O (n)” instead of “2n is O (n2)”.
Use the simplest expression of the class. Say “3n+5 is O (n)” instead of “3n+5 is O (3n)”

Relatives of Big-Oh

Big-Omega
F (n) is Ω (g(n)) if there is a constant c > 0 and an integer constant n0>= 1 such that f(n)>= c•
g(n) for n>= n0

Big-Theta
f(n) is Θ (g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer constant n0>1 such that
c’• g(n)<= f(n)<= c’’• g(n) for n>= n0

Little-oh
 F (n) is o (g(n)) if, for any constant c > 0, there is an integer constant n0> 0 such that f(n) <
c• g(n) for n>= n0

Little-omega
f(n) is ω (g(n)) if, for any constant c > 0, there is an integer constant n0> 0 such that f(n) > c•
g(n) for n>= n0

Intuition for Asymptotic Notation Big-Oh

f (n) is O (g(n)) if f(n) is asymptotically less than or equal to g(n)

Big-Omega
f (n) is Ω (g (n)) if f(n) is asymptotically greater than or equal to g(n)

Big-Theta
f (n) is Θ (g (n)) if f(n) is asymptotically equal to g(n)

Little-oh
f (n) is o (g (n)) if f(n) is asymptotically strictly less than g(n)

Little-omega
f (n) is ω (g (n)) if is asymptotically strictly greater than g(n)

Examples

5n2Ω is (n2)
F (n) is Ω (g(n)) if there is a constant c > 0 and an integer constant n0>=1 such that f(n)>= c•
g(n) for n>= n0 let c = 5 and n0= 1

5n2Ω is (n)
f(n) is Ω (g(n)) if there is a constant c > 0 and an integer constant n0>=1 such that f(n) >=c•
g(n) for n>= n0 let c = 1 and n0= 1

5 n2 ω (n)
F (n) is ω (g(n)) if, for any constant c > 0, there is an integer constant n0> 0 such that f(n) >
c• g(n) for n >=n0 need 5n0

2> c•n0given c, the n0that satisfies this is n0> c/5 > 0.

(c) Ω Notation

For function g (n), we define Ω (g(n)), big-Omega of n, as the set:
Ω (g (n)) ={ f(n) :∃ positive constants c and n0,such that ∀n >=n0,we have0 <=cg(n)<=f(n) }

Intuitively: Set of all functions whose rate of growth is the same as or higher than that of g(n).
g(n) is an asymptotic lower bound for f(n).

f (n) =Θ (g(n)) f(n)⇒f(n)=Ω (g(n)) Θ (g (n))⊂ Ω (g (n))

Relations Between Θ , O, Ω

Theorem : For any two functions g(n) and f(n), f(n) = Θ (g(n)) iff f(n) =O(g(n)) and f(n) =
Ω (g(n)).

i.e., Θ (g (n)) = O (g(n)) (g(n))
Asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times

“Running time is O (f (n))” Worst case is O(f(n))
O (f (n)) bound on the worst-case running time ⇒O (f(n)) bound on the running time of every
input.
Θ (f (n)) bound on the worst-case running time Θ (f(n)) bound on the running time of every
input.
“Running time is (f (n))” Best case is (f (n)) Can still say “Worst-case running time is Ω (f
(n))”. Means worst-case running time is given by some unspecified function g (n)∈ Ω (f (n)).

Asymptotic Notation in Equations

We can use asymptotic notation in equations to replace expressions containing lower-order
terms.

Example: 4n3+ 3n2+ 2n+ 1 = 4n3+ 3n2+ (n)
 = 4n3+ (n2) = (n3).

Θ (f (n)) always stands for an anonymous function g(n) ∈ Θ (f(n))

Little o-notation
For a given function g(n), the set little-o: ∀o(g(n))= {f(n): ∀c> 0,∃ n0> 0such that ∀n>= n0,
we have 0<= f(n)<cg(n) }.
F (n) becomes insignificant relative to g (n) as n approaches infinity:
lim [f(n) / g(n)] = 0
n->α
g (n) is an upper bound for f(n)that is not asymptotically tight.

Little ω –notation

For a given function g(n), the set little-omega: (g(n))= {f(n): ∀c> 0,∃ n0> 0such that ∀n >=
n0, we have 0 <= cg(n) < f(n) }.
F (n) becomes arbitrarily large relative to g(n)as n approaches infinity:
lim [f(n) / g(n)] =α .
n->α
g (n) is a lower bound for f(n)that is not asymptotically tight.

………………………..
Chapter-2

Divide and Conquer

2.1 General Method

Definition

Divide the problem into a number of sub problems; conquer the sub problems by solving
them recursively. If the sub problem sizes are small enough, solve the sub problems
recursively, and then combine these solutions to create a solution to the original problem.

Divide-and conquer is a general algorithm design paradigm

Divide: divide the input data S in two or more disjoint subsets S1, S2,
Recursively: solve the sub problems recursively
Conquer: combine the solutions for S1, S2… into a solution for S
The base case for the recursion is sub problems of constant size. Analysis can be done using
recurrence equations

a problem of size
n

Sub problem
1

Sub problem
2
Of size n/2

A solution to sub
problem 1

A solution to sub
problem 2

Solution to original
problem

Algorithm

Algorithm D-and-C (n: input size)
{
if n ≤ n0 /* small size problem*/
Solve problem without further sub-division;
Else
 {
 Divide into m sub-problems;
 Conquer the sub-problems by solving them
 Independently and recursively; /* D-and-C(n/k) */
 Combine the solutions;
 }
}
Advantage
 Straight forward and running times are often easily determined

2.2 Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into parts, where each sub-
problem is of size n/b. Also, suppose that a total number of g(n) extra operations are needed
in the conquer step of the algorithm to combine the solutions of the sub-problems into a
solution of the original problem. Let f (n) is the number of operations required to solve the
problem of size n. Then f satisfies the recurrence relation and it is called divide-and-conquer
recurrence relation.
 F (n) =a f(n/b)+g(n)
The computing time of Divide and conquer is described by recurrence relation.
T (n) = {g(n) where n small
 {T (n1) +T (n2) +………. + T (n k) + f (n) other wise
T (n) is the time for Divide and Conquer on any input of size n and g (n) is the time to
compute the answer directly for small inputs. The function of f (n) is the time for dividing P
combining solutions to sub problems. For divide-and-conquer-based algorithms that produce
sub problems of the same type as the original problem, then such algorithm described using
recursion.
The complexity of many divide-and-conquer algorithms is given by recurrence of the form.
T (n) = {T (1) n=1

 {a T(n/b) + f(n) n>1 where a and b are known constants, and n is a power of b (n=b k).
One of the methods for solving any such recurrence relation is called substitution method.

Examples

If a=2 and b=2. Let T (1) =2 and f (n)=n. Than
T (n) = 2T (n/2) +n
 =2[2 T (n/4) + n/2] +n
 =4 T (n/4) +2n
 =4[2 T (n/8) +n/4] + 2n
 =8 T (n/8) + 3n
 .
 .
 .
In general, T (n) = 2i T (n/2i) +in, for any log 2 n>= i>=1. In Particular, then T (n) = 2 log

2 n T
(n/ 2 log

2 n) + n log 2 n corresponding to choice of
 i= log 2 n. Thus, T (n) = n T (1) + n log 2 n = n log 2 n + 2 n.

2.3 Divide and Conquer Applications

2.3.1 Min and Max
The minimum of a set of elements: The first order statistic i = 1
The maximum of a set of elements: The n th order statistic i = n
The median is the “halfway point” of the set I = (n+1)/2, is unique
When n is odd

 i =  (n+1)/2 = n/2 (lower median) and  (n+1)/2 = n/2+1 (upper median), when n is
even
Finding Minimum or Maximum
Alg: MINIMUM (A, n)
 min ← A[1]
 for i ← 2 to n
 do if min > A[i]
 then min ← A[i]
 return min

How many comparisons are needed?
n – 1: each element, except the minimum, must be compared to a smaller element at least
once. The same number of comparisons is needed to find the maximum. The algorithm is
optimal with respect to the number of comparisons performed.

Simultaneous Min, Max

Find min and max independently
 Use n – 1 comparisons for each ⇒ total of 2n – 2

At most 3n/2 comparisons are needed. Process elements in pairs. Maintain the minimum and
maximum of elements seen so far. Don’t compare each element to the minimum and
maximum separately. Compare the elements of a pair to each other. Compare the larger
element to the maximum so far, and compare the smaller element to the minimum so far. This
leads to only 3 comparisons for every 2 elements.

Analysis of Simultaneous Min, Max
Setting up initial values:
n is odd: compare the first two elements, assign the smallest one to min and the largest one
to max
n is even:
Total number of comparisons:

n is odd: we do 3(n-1)/2 comparisons
n is even: we do 1 initial comparison + 3(n-2)/2 more comparisons = 3n/2 - 2
comparisons

Example

1. n = 5 (odd), array A = {2, 7, 1, 3, 4}
1. Set min = max = 2
2. Compare elements in pairs:

 1 < 7 ⇒ compare 1 with min and 7 with max

 ⇒min = 1, max = 7 3-comparisions

 3 < 4⇒ compare 3 with min and 4 with max

⇒min = 1, max = 7 3-comparisions
 3(n-1)/2 = 6 comparisons

2. n = 6 (even), array A = {2, 5, 3, 7, 1, 4}
1. Compare 2 with 5: 2 < 5
2. Set min = 2, max = 5
3. Compare elements in pairs:

 3 < 7 ⇒ compare 3 with min and 7 with max

 ⇒ min = 2, max = 7 3-comparisons

 1 < 4 ⇒ compare 1 with min and 4 with max

 ⇒ min = 1, max = 7
 3n/2 - 2 = 7 comparisons 3-comparisions

 ⇒ min = 1, max = 7

2.3.2 Binary Search

The basic idea is to start with an examination of the middle element of the array. This will
lead to 3 possible situations: If this matches the target K, then search can terminate
successfully, by printing out the index of the element in the array. On the other hand, if
K<A[middle], then search can be limited to elements to the left of A[middle]. All elements to

the right of middle can be ignored. If it turns out that K >A[middle], then further search is
limited to elements to the right of A[middle]. If all elements are exhausted and the target is
not found in the array, then the method returns a special value such as –1.

1st Binary Search function:
int BinarySearch (int A[], int n, int K)
{
int L=0, Mid, R= n-1;
while (L<=R)
{
Mid = (L +R)/2;
if (K= =A[Mid])
return Mid;
else if (K > A[Mid])
L = Mid + 1;
else
R = Mid – 1;
}
return –1 ;}

Let us now carry out an Analysis of this method to determine its time complexity. Since there
are no “for” loops, we cannot use summations to express the total number of operations. Let
us examine the operations for a specific case, where the number of elements in the array n is
64. When n= 64 Binary Search is called to reduce size to n=32

When n= 32 Binary Search is called to reduce size to n=16
When n= 16 Binary Search is called to reduce size to n=8
When n= 8 Binary Search is called to reduce size to n=4
When n= 4 Binary Search is called to reduce size to n=2
When n= 2 Binary Search is called to reduce size to n=1.

Thus we see that Binary Search function is called 6 times (6 elements of the array were
examined) for n =64. Note that 64 = 26.Also we see that the Binary Search function is called
5 times (5 elements of the array were examined) for n = 32. Note that 32 = 25 Let us consider
a more general case where n is still a power of 2. Let us say n = 2k.

Following the above argument for 64 elements, it is easily seen that after k searches, the
while loop is executed k times and n reduces to size 1. Let us assume that each run of the
while loop involves at most 5 operations. Thus total number of operations: 5k. The
value of k can be determined from the expression 2k = n .Taking log of both sides Log 2 k =
log n Thus total number of operations = 5 log n. We conclude that the time complexity of the
Binary search method is O (log n), which is much more efficient than the Linear Search
method.

2nd method Binary Search function

Binary-Search (A; p; q; x)
1. if p > q return -1;
2. r = b (p + q)=2 c
3. if x = A[r] return r
4. else if x < A[r] Binary-Search(A; p; r; x)
5. else Binary-Search(A; r + 1; q; x)
² The initial call is Binary-Search (A; 1; n; x).

List [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[11]

4 8 19 25 34 39 45 48 66 75 89 95

List length=12
 Search list
 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[11]

4 8 19 25 34 39 45 48 66 75 89 95

 mid
Search list, list[0]….list[1]

Middle element
 Mid=left + right/2

4 8 19 25 34 39 45 48 66 75 89 95
 Sorted list for a binary search

Value of first, last, mid, no of comparisons for search item 89
Iteration First Last Mid Last[mid] No.of Comparisons
1 0 11 5 39 2
2 6 11 8 66 2
3 9 11 10 89 1(found it is true)

Binary search tradeoffs
Benefit: More efficient than linear search (for array of N elements performs at most log2 N
comparisons)
Disadvantages: requires that array elements to be sorted.

15
5

7
5

17

Full and balanced Binary search tree

Logarithmic Time Complexity of Binary Search

Our analysis shows that binary search can be done in time proportional to the log of the
number of items in the list this is considered very fast when compared to linear or polynomial
algorithms .The table to the right compares the number of operations that need to be
performed for algorithms of various time complexities. The computing time binary search by
best, average and

Worst cases:
Successful searches

Θ (1) best, Θ (log n) average

Θ (log n) worst
Unsuccessful searches

Θ (log n) for best , average and worst case

2.3.2 Merge Sort Algorithm

Divide: Divide the n-element sequence into two subsequences of n/2 elements each.

Conquer: Sort the two subsequences recursively using merge sort.

16 198
5

1
6 10 18

21

49

17 47

11 19 43 67

Combine: Merge the two sorted sequences.

How to merge two sorted sequences:

We have two sub arrays A [p...q] and A [q+1..r] in sorted order. Merge sort algorithm merges
them to form a single sorted sub array that replaces the current sub array A [p...r].

To sort the entire sequence A [1...n], make the initial call to the procedure MERGE-
SORT(A,1,n).

MERGE-SORT (A, p, r)
{

1. IF p<r //Check for base case
2. THEN q=FLOOR[(p+r)/2] //Divide step
3. MERGESORT (A,p,q) //Conquer step
4. MERGESORT(A,q+1,r) //Conquer step
5. MERGE (A, p, q, r) //Conquer step.

}

The pseudo code of the MERGE procedure is as follow:
 MERGE (A, p, q, and r)
 n1 ← q − p + 1
 n2 ← r – q
 Create arrays L [1 . . . n1 + 1] and R[1 . . n2 + 1]
 FOR i ← 1 TO n1

 DO L[i] ← A [p + i − 1]
 FOR j ← 1 TO n2

 DO R[j] ← A [q + j]
 L [n1 + 1] ← ∞
 R [n2 + 1] ← ∞
 i ← 1
 j ← 1
 FOR k ← p TO r
 DO IF L [i] ≤ R [j]
 THEN A [k] ← L [i]
 i ← i + 1
 ELSE A[k] ← R[j]
 j ← j + 1

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree each node represents a recursive call
of merge-sort and stores unsorted sequence before the execution and its partition sorted
sequence at the end of the execution. The root is the initial call. The leaves are calls on
subsequences of size 0 or 1.

Analyzing Divide-and-
Conquer Algorithm

When an algorithm contains a recursive call to itself, its running time can be described by a
recurrence equation or recurrence which describes the running time.

Analysis of Merge-Sort:

The height h of the merge-sort tree is O (log n)
– at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O (n)
– we partition and merge 2i sequences of size n/2i
– we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O (n log n)

Depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

Recurrence
If the problem size is small enough, say n<=c for some constant c, the straightforward
solution takes constant time, can be written as θ (1). If we have a sub problems, each of
which is 1/b the size of the original. D (n) time to divide the problem and C (n) time to
combine the solution.
The recurrence is

T (n) = θ (1) if n <= c
 a T (n/b) + D(n) + C(n) otherwise
Divide: The divide step computes the middle of the sub array which takes constant time,
D(n)=θ(1)
Conquer: We recursively solve two sub problems, each of size n/2, which contributes 2T(n/2)
to the running time.
Combine: Merge procedure takes θ (n) time on an n-element sub array. C (n)=θ(n)
The recurrence is

T (n) = θ (1) if n=1
 2T (n/2) + θ (n) if n>1

Let us rewrite the recurrence
T (n) = C if n=1

 2 T (n/2) + cn if n>1

C represents the time required to solve problems of size 1
A Recursion Tree for the Recurrence
 T (n)

 T (n/2) T (n/2)
A Recursion Tree for the Recurrence

 Cn

 Cn/2 Cn/2

 T (n/4) T (n/4) T (n/4) T (n/4)

A Recursion Tree for the Recurrence

 Cn cn

 Cn/2 Cn/2 cn

 Cn/4 Cn/4 Cn/4 Cn/4 cn

 c c c c c c c c cn

A Recursion Tree for the Recurrence in the above recursion tree, each level has cost cn. The
top level has cost cn. The next level down has 2 sub problems; each contributing cost
cn/2.The next level has 4 sub problems, each contributing cost cn/4. Each time we go down
one level, the number of sub problems doubles but the cost per sub problem halves.
Therefore, cost per level stays the same. The height of this recursion tree is log n and there
are log n + 1 levels. Total Running Time of a tree for a problem size of 2i has log 2i + 1 = i +1
levels. The fully expanded tree recursion tree has log n+1 levels. When n=1 than 1 level log
1=0, so correct number of levels log n+1. Because we assume that the problem size is a
power of 2, the next problem size up after 2i is 2i + 1. A tree for a problem size of 2i + 1 has
one more level than the size-2i tree implying i + 2 levels. Since log 2i + 1 = i + 2, we are done
with the inductive argument. Total cost is sum of costs at each level of the tree. Since we
have log n +1 levels, each costing cn, the total cost is cn log n + cn. Ignore low-order term of
cn and constant coefficient c, and we have, Θ (n log n). The fully expanded tree has lg n +1
levels and each level contributes a total cost of cn. Therefore T (n)= cn log n + cn = θ(nlog n).
Growth of Functions We look at input sizes large enough to make only the order of growth of
the running time relevant.

2.3.4 Divide and Conquer: Quick Sort
Pick one element in the array, which will be the pivot. Make one pass through the array,
called a partition step, re-arranging the entries so that, entries smaller than the pivot are to the
left of the pivot. Entries larger than the pivot are to the right. Recursively apply quick sort to
the part of the array that is to the left of the pivot, and to the part on its right. No merge step,
at the end all the elements are in the proper order. Choosing the Pivot some fixed element:
e.g. the first, the last, the one in the middle. Bad choice - may turn to be the smallest or the
largest element, and then one of the partitions will be empty. Randomly chosen (by random
generator) still a bad choice. The median of the array (if the array has N numbers, the median
is the [N/2] largest number). This is difficult to compute - increases the complexity. The
median-of-three choice: take the first, the last and the middle element. Choose the median of
these three elements.

Quick Sort:
Quick sort is introduced by Hoare in the year 1962.
All elements to the left of pivot are smaller or equal than pivot, and
All elements to the right of pivot are greater or equal than pivot
Pivot in correct place in sorted array/list
Divide: Partition into sub arrays (sub-lists)
Conquer: Recursively sort 2 sub arrays
Combine: Trivial
Problem: Sort n keys in non-decreasing order
Inputs: Positive integer n, array of keys S indexed from 1 to n
Output: The array S containing the keys in non-decreasing order.

Quick sort (low, high)
1. if high > low
2. then partition(low, high, pivotIndex)
3. quick sort(low, pivotIndex -1)
4. quick sort(pivotIndex +1, high)

Partition array for Quick sort
partition (low, high, pivot)

1. pivotitem = S [low]
2. k=low
3. for j = low +1 to high
4. do if S [j] < pivotitem
5. then k = k + 1
6. exchange S [j] and S [k]
7. pivot = k
8. exchange S[low] and S[pivot]

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 Divide: pick a random element x (called pivot) and partition S into

L elements less than x
E elements equal x
G elements greater than x

 Recur: sort L and G
 Conquer: join L, E and G

Partition

We partition an input sequence as follows:
 -We remove, in turn, each element y from S and
 -We insert y into L, E or G, depending on the result of the comparison with the pivot x
Each insertion and removal is at the beginning or at the end of a sequence, and hence takes
O(1) time. Thus, the partition step of quick-sort takes O (n) time

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree. Each node represents a recursive call
of quick-sort and stores. Unsorted sequence before the execution and its pivot. Sorted
sequence at the end of the execution

– The root is the initial call
– The leaves are calls on subsequences of size 0 or 1

Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of:
1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements < pivot

The sub-arrays are stored in the original data array. Partitioning loops through, swapping
elements below/above pivot.
There are a number of ways to pick the pivot element. In this example, we will use the first
element in the array:
40 20 10 80 60 50 7 30 100

Partitioning result
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]

<=data [pivot] >data [pivot]

Quick sort: Worst Case
Assume first element is chosen as pivot. Assume we get array that is already in order:
Pivot_index=0
2 4 10 12 13 50 57 63 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

Complexity of Quick Sort
If we have an array of equal elements, the array index will never increment i or decrement j,
and will do infinite swaps. i and j will never cross.
Worst Case: O (N2)
This happens when the pivot is the smallest (or the largest) element. Then one of the
partitions is empty, and we repeat recursively the procedure for N-1 elements.

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique minimum or maximum
element. One of L and G has size n - 1 and the other has size 0
The running time is proportional to the sum
n + (n - 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O (n2)

Depth time

0 N

1 n - 1

… …

n – 1 1

Worst-Case Analysis
The pivot is the smallest (or the largest) element
 T (N) = T (N-1) + cN, N > 1
 Telescoping:
 T (N-1) = T (N-2) + c (N-1)
 T (N-2) = T (N-3) + c (N-2)
 T (N-3) = T (N-4) + c (N-3)
 …………...
 T (2) = T (1) + c.2
 T (N) + T (N-1) + T (N-2) + … + T (2) =
 = T (N-1) + T (N-2) + … + T (2) + T (1) +
 C (N) + c (N-1) + c (N-2) + … + c.2

T (N) = T (1) +
 c times (the sum of 2 thru N)
= T (1) + c (N (N+1) / 2 -1) = O (N2)

Average-case: O (N logN)
Best-case: O (N logN)

The pivot is the median of the array, the left and the right parts have same size. There are
logN partitions, and to obtain each partition we do N comparisons (and not more than N/2
swaps). Hence the complexity is O (NlogN).

Best case Analysis:
T (N) = T (i) + T (N - i -1) + cN
The time to sort the file is equal to the time to sort the left partition with i elements, plus the
time to sort the right partition with N-i-1 elements, plus the time to build the partitions.
The pivot is in the middle
T (N) = 2 T (N/2) + cN
Divide by N: T (N) / N = T (N/2) / (N/2) + c
Telescoping:
T (N) / N = T (N/2) / (N/2) + c
T (N/2) / (N/2) = T (N/4) / (N/4) + c
T (N/4) / (N/4) = T (N/8) / (N/8) + c
……
T (2) / 2 = T (1) / (1) + c
Add all equations:
T (N) / N + T (N/2) / (N/2) + T (N/4) / (N/4) + …. + T (2) / 2 =
= (N/2) / (N/2) + T (N/4) / (N/4) + … + T (1) / (1) + c.logN
After crossing the equal terms:
T (N)/N = T (1) + c * LogN
T (N) = N + N * c * LogN = O (NlogN)

Advantages and Disadvantages:
Advantages

One of the fastest algorithms on average
Does not need additional memory (the sorting takes place in the array - this is
called in-place processing)

Disadvantages
The worst-case complexity is O (N2)

Applications
Commercial applications
Quick Sort generally runs fast
No additional memory
The above advantages compensate for the rare occasions when it runs with O (N2)

2.3.5 Divide and Conquer: Selection Sort

Definition: First find the smallest in the array and exchange it with the element in the first
position, then find the second smallest element and exchange it with the element in the
second position, and continue in this way until the entire array is sorted.

Selection sort is:
 -The simplest sorting techniques.
 -a good algorithm to sort a small number of elements
 -an incremental algorithm – induction method

Selection sort is Inefficient for large lists.

Incremental algorithms à process the input elements one-by-one and maintain the solution
for the elements processed so far.

Let A [1…n] be an array of n elements. A simple and straightforward algorithm to sort the
entries in A works as follows. First, we find the minimum element and store it in A [1]. Next,
we find the minimum of the remaining n-1 elements and store it in A [2]. We continue this
way until the second largest element is stored in A [n-1].
Input: A [1…n];
Output: A [1…n] sorted in non-decreasing order;

1. for i←1 to n-1

2. k←i;

3. for j←i+1 to n

4. if A[j]<A[k] then k←j;
5. end for;

6. if k≠ i then interchange A[i] and A[k];
7. end for;

Procedure of selection sort

i.Take multiple passes over the array.
ii.Keep already sorted array at high-end.
iii.Find the biggest element in unsorted part.
iv.Swap it into the highest position in unsorted part.
v.Invariant: each pass guarantees that one more element is in the correct position (same as
bubble sort) a lot fewer swaps than bubble sort!

Start- unsorted

Pass 1

Pass 2

Pass 3

12 8 3 21 99 1

12 8 3 21 99 1
12 8 3 21 1 99

12 8 3 21 1 99
12 8 3 1 21 99

12 8 3 1 21 99

Pass 4

Pass 5

Sorted

Example Execution of selection sort Tracing

Pass 2 Pass 3
Last 3 Last 2
Largest index 0, 0, 0 largest index 0, 1
P=1, 2, 3 p=1, 2

Pass 4
last = 1
Largest Index = 0, 1
p = 1

Selection Sort Implementation for Best Case [2 4 6 8 10]

1 8 3 12 21 99

1 8 3 12 21 99
1 3 8 12 21 99

1 3 8 12 21 99

1 3 8 12 21 99

Selection Sort Analysis
For an array with size n, the external loop will iterate from n-1 to 1.
for (int last = n-1; last>=1; --last) For each iteration, to find the largest number in sub array,
the number of comparison inside the internal loop must is equal to the value of last. for (int
p=1;p <=last; ++p) Therefore the total comparison for Selection Sort in each iteration is (n-
1) + (n-2) + ….. 2 + 1. Generally, the number of comparisons between elements in Selection
Sort can be stated as follows:

Selection Sort – Algorithm Complexity

Time Complexity for Selection Sort is the same for all cases - worst case, best case or
average case O (n2). The number of comparisons between elements is the same. The
efficiency of Selection Sort does not depend on the initial arrangement of the data.

Alg.: SELECTION-SORT (A) Cost times
1. n ← length[A] c1 1
2. for j ← 1 to n – 1 c2 n
3. do smallest ← j c3 n-1
4. for i ← j + 1 to n c4
5. do if A[i] < A[smallest] c5
6.then smallest ← i c6
7. exchange A[j] ↔ A[smallest] c7 n-1

2.11 Stressen’s Matrix Multiplication:

Multiplication of Large Integer

Consider the problem of multiplying two (large) n-digit integers represented b arrays of their
digits such as:

A = 12345678901357986429 B = 87654321284820912836

∑−

=
+−1

1
)1(

n

j
jn

∑−

=
−1

1
)(

n

j
jn

∑−

=
−1

1
)(

n

j
jn

The grade-school algorithm:
a1 a2 … an

 b1 b2 … bn

 (d10) d11d12 … d1n

 (d20) d21d22 … d2n

 … … … … … … …
 (dn0) dn1dn2 … dnn

Efficiency: Θ (n2) single-digit multiplications

First Divide-and-Conquer Algorithm

A small example: A ∗ B where A = 2135 and B = 4014
A = (21·102 + 35), B = (40 ·102 + 14)

So, A ∗ B = (21 ·102 + 35) ∗ (40 ·102 + 14)

 = 21 ∗ 40 ·104 + (21 ∗ 14 + 35 ∗ 40) ·102 + 35 ∗ 14
In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,
A1, A2, B1, B2 are n/2-digit numbers),

A ∗ B = A1 ∗ B1·10n + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2

Recurrence for the number of one-digit multiplications M(n):

M (n) = 4 M (n/2),
M (1) = 1
Solution: M (n) = n2

Second Divide-and-Conquer Algorithm:

A ∗ B = A1 ∗ B1·10n + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2

The idea is to decrease the number of multiplications from 4 to 3:

 (A1 + A2) ∗ (B1 + B2) = A1 ∗ B1 + (A1 ∗ B2 + A2 ∗ B1) + A2 ∗ B2,

I.e., (A1 ∗ B2 + A2 ∗ B1) = (A1 + A2) ∗ (B1 + B2) - A1 ∗ B1 - A2 ∗ B2,
which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M (n):
 M(n) = 3M(n/2), M(1) = 1
Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

Example of Large-Integer Multiplication:

2135 ∗ 4014
(21*10^2 + 35) * (40*10^2 + 14)

= (21*40)*10^4 + c1*10^2 + 35*14
where c1 = (21+35)*(40+14) - 21*40 - 35*14, and
21*40 = (2*10 + 1) * (4*10 + 0)
 = (2*4)*10^2 + c2*10 + 1*0
where c2 = (2+1)*(4+0) - 2*4 - 1*0, etc.
This process requires 9 digit multiplications as opposed to 16.

Conventional Matrix Multiplication:
Brute-force algorithm

c00 c01 a00 a01 b00 b01

 = *

c10 c11 a10 a11 b10 b11

a00 * b00 + a01 * b10 a00 * b01 + a01 * b11

 =
a10 * b00 + a11 * b10 a10 * b01 + a11 * b11

 8 multiplications, 4 additions Efficiency class in general: Θ (n3)

Strassen’s Matrix Multiplication
Strassen’s algorithm for two 2x2 matrices (1969):

 c00 c01 a00 a01 b00 b01

 = *
 c10 c11 a10 a11 b10 b11

 m1 + m4 - m5 + m7 m3 + m5
 = m2 + m4 m1 + m3 - m2 + m6

m1 = (a00 + a11) * (b00 + b11)
m2 = (a10 + a11) * b00
m3 = a00 * (b01 - b11)
m4 = a11 * (b10 - b00)
m5 = (a00 + a01) * b11
m6 = (a10 - a00) * (b00 + b01)
m7 = (a01 - a11) * (b10 + b11)

 7 multiplications, 18 additions

Strassen observed [1969] that the product of two matrices can be computed in general as
follows

 C00 C01 A00 A01 B00 B01

 = *
 C10 C11 A10 A11 B10 B11

 M1 + M4 - M5 + M7 M3 + M5

 =
 M2 + M4 M1 + M3 - M2 + M6

Formulas for Strassen’s Algorithm

M1 = (A00 + A11) ∗ (B00 + B11)

M2 = (A10 + A11) ∗ B00

M3 = A00 ∗ (B01 - B11)

M4 = A11 ∗ (B10 - B00)

M5 = (A00 + A01) ∗ B11

M6 = (A10 - A00) ∗ (B00 + B01)

M7 = (A01 - A11) ∗ (B10 + B11)

Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:
 M (n) = 7 M(n/2), M(1) = 1
Solution: M (n) = 7log 2n = nlog 27 ≈ n2.807 vs. n3 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they are even more
complex and not used in practice.

Chapter-3
 Greedy Method

3.1 Greedy Technique Definition

 Constructs a solution to an optimization problem piece by piece through a sequence of
choices that are: feasible, i.e. satisfying the constraints locally optimal (with respect to some
neighborhood definition) greedy (in terms of some measure), and irrevocable. For some
problems, it yields a globally optimal solution for every instance. For most, does not but can
be useful for fast approximations. We are mostly interested in the former case in this class.

Generic Algorithm

Algorithm Greedy(a,n)
{
//a[1..n] contains the n inputs.

solution:= ∅;
For i:= 1to n do
{
X=select(a);
If Feasible(solution , x) then
solution:= union(solution, x);
}
return solution;
}
Applications of the Greedy Strategy

Optimal solutions:

• change making for “normal” coin denominations

• minimum spanning tree (MST)

• single-source shortest paths

• simple scheduling problems

• Huffman codes

Approximations/heuristics:

• Traveling salesman problem (TSP)

• knapsack problem

• other combinatorial optimization problems

Change-Making Problem:
Given unlimited amounts of coins of denominations d1 > … > dm, give change for amount n
with the least number of coins
Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution:
 Greedy solution is Optimal for any amount and “normal’’ set of denominations
Ex: Prove the greedy algorithm is optimal for the above denominations. It may not be optimal

for arbitrary coin denominations.
3.2 The Fractional Knapsack Problem
Given a set S of n items, with each item i having bi - a positive benefit wi - a positive weight
our goal is to Choose items with maximum total benefit but with weight at most W. If we are
allowed to take fractional amounts, then this is the fractional knapsack problem. In this
case, we let xi denote the amount we take of item i
 Objective: maximize

 Constraint:

Algorithm for greedy strategy for knapsack problem:

Algorithm GreedyKnapsack(m,n)

//p[1:n] and w[1:n] contain profits and weights respectively of n objects ordered such that
//p[i]/w[i] >=p[i+1]/w[i+1].m is the knapsack size and x[1:n] is the solution vector
{
For i:= 1 to n do x[i]:=0.0; //initialize x
U:=m;

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx

{
If (w[i]>U) then break;
x[i]:=1.0; U:=U-w[i];
}
If (i<=n) then x[i]:=U/w[i];
}
Example model-1

In this model items are arranged by their values, maximum selected first, process continuous
till minimum value. Here given a set S of n items, with each item i having bi - a positive
benefit wi - a positive weight here our goal is to Choose items with maximum total benefit
but with weight at most W.
Items:

 Weight: 4 ml 8 ml 2 ml 6 ml 1 ml
Benefit: Rs.12 Rs.32 Rs.40 Rs.30 Rs.50
Value: 3 4 20 5 50

(Rs. per ml)

Knapsack Problem model-2

In this model items are arranged by their weights, lightest weight selected first, process
continuous till the maximum weight. You have a knapsack that has capacity (weight) and
You have several items I1,…,In..Each item Ij has a weight wj and a benefit bj.You want to
place a certain number of copies of each item Ij in the knapsack so that:

i)The knapsack weight capacity is not exceeded and

ii)The total benefit is maximal.

Example

f (0), f(1)
f (0) = 0. Why? The knapsack with capacity 0 can have nothing in it.
f (1) = 0. There is no item with weight 1.
f (2)
f (2) = 60. There is only one item with weight 60.then choose A.
f (3)
f(3) = MAX {bj + f(w-wj) | Ij is an item}.
= MAX {60+f (3-2), 75 + f (3-3)}
= MAX {60 + 0, 75 + 0}
= 75 then Choose B.
F (4)
F (4) = MAX {bj + f (w-wj) | Ij is an item}.
= MAX {60 + f (4-2), 75 + f (4-3), 90+f (4-4)}
= MAX {60 + 60, 75 + f (1), 90 + f (0)}
= MAX {120, 75, 90}
=120. Then choose A
F (5)
F (5) = MAX {bj + f(w-wj) | Ij is an item}.
= MAX {60 + f (5-2), 75 + f (5-3), 90+f (5-4)}

Item Weight Benefit

A 2 60

B 3 75

C 4 90

= MAX {60 + f (3), 75 + f (2), 90 + f (1)}
= MAX {60 + 75, 75 + 60, 90+0}
= 135. Then choose A or B.

Result
Optimal knapsack weight is 135. There are two possible optimal solutions:
Choose A during computation of f (5).
Choose B in computation of f (3).
Choose B during computation of f (5).
Choose A in computation of f (2).
Both solutions coincide. Take A and B.

Procedure to solve the knapsack problem

It is Much easier for item Ij, let rj = bj/ wj. This gives you the benefit per measure of weight
and then Sort the items in descending order of rj .Pack the knapsack by putting as many of
each item as you can walking down the sorted list.

Example model-3

 I=<I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160> knapsack capacity W=60, the
solution to the fractional knapsack problem is given as:
Initially

Taking value per weight ratio

Item wi vi Pi=vi/wi

I1 5 30 6.0

I2 10 20 2.0

I3 20 100 5.0

I4 30 90 3.0

I5 40 160 4.0

Item Wi Vi

I1 5 30

I2 10 20

I3 20 100

I4 30 90

I5 40 160

Arranging item with decreasing order of Pi

Item wi vi Pi=vi/wi

I1 5 30 6.0

I2 20 100 5.0

I3 40 160 4.0

I4 30 90 3.0

I5 10 20 2.0

Filling knapsack according to decreasing value of Pi, max. value = v1+v2+new
(v3)=30+100+140=270

3.3 Greedy Method – Job Sequencing Problem

Job sequencing with deadlines the problem is stated as below. There are n jobs to be
processed on a machine. Each job i has a deadline di ≥ 0 and profit pi≥0. Pi is earned iff the
job is completed by its deadline. The job is completed if it is processed on a machine for unit
time. Only one machine is available for processing jobs. Only one job is processed at a time
on the machine.
A given Input set of jobs 1,2,3,4 have sub sets 2n so 24 =16

It can be written as {1},{2},{3},{4},{Ø},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},
{1,2,4},{2,3,4},{1,2,3,4},{1,3,4} total of 16 subsets

Problem:
n=4 , P=(70,12,18,35) , d=(2,1,2,1)

Feasible Processing Profit value Time Line
Solution Sequence 0 1 2
 1 1 70
 2 2 12
 3 3 18
 4 4 35
 1,2 2,1 82
1,3 1,3 /3,1 88
1,4 4,1 105
2,3 3,2 /2,3 30
3,4 4,3/3,4 53

We should consider the pair i,j where di <=dj if di>dj we should not consider pair then
reverse the order. We discard pair (2, 4) because both having same dead line(1,1) and cannot
process same. Time and discarded pairs (1,2,3), (2,3,4), (1,2,4)…etc since processes are not
completed within their deadlines. A feasible solution is a subset of jobs J such that each job is
completed by its deadline. An optimal solution is a feasible solution with maximum profit
value.

Example
 Let n = 4, (p1,p2,p3,p4) = (100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1)

Sr.No. Feasible Processing Profit value
 Solution Sequence
(i) (1, 2) (2, 1) 110
(ii) (1, 3) (1, 3) or (3, 1) 115
(iii) (1, 4) (4, 1) 127 is the optimal one
(iv) (2, 3) (2, 3) 25
(v) (3, 4) (4, 3) 42
(vi) (1) (1) 100
(vii) (2) (2) 10
(viii) (3) (3) 15
(ix) (4) (4) 27

Problem: n jobs, S = {1, 2… n}, each job i has a deadline di ≥ 0 and a profit pi ≥ 0. We need
one unit of time to process each job and we can do at most one job each time. We can earn
the profit pi if job i is completed by its deadline.
The optimal solution = {1, 2, 4}.
The total profit = 20 + 15 + 5 = 40.

Algorithm
Step 1: Sort pi into non-increasing order.

After sorting p1 ≥ p2 ≥ p3 ≥ … ≥ pi.
Step 2: Add the next job i to the solution set if i can be completed by its deadline. Assign i to

time slot [r-1, r], where r is the largest integer such that 1 ≤ r ≤ di and [r-1, r] is free.
Step 3: Stop if all jobs are examined. Otherwise, go to step 2.
Time complexity: O (n2)
Example

I pi di

1 20 2 assign to [1, 2]

2 15 2 assign to [0, 1]

3 10 1 Reject

i 1 2 3 4 5

pi 20 15 10 5 1

di 2 2 1 3 3

4 5 3 assign to [2, 3]

5 1 3 Reject

solution = {1, 2, 4}
total profit = 20 + 15 + 5 = 40

Greedy Algorithm to Obtain an Optimal Solution
Consider the jobs in the non increasing order of profits subject to the constraint that the
resulting job sequence J is a feasible solution.
In the example considered before, the non-increasing profit vector is
(100 27 15 10) (2 1 2 1)
 p1 p4 p3 p2 d1 d4 d3 d2

J = {1} is a feasible one
J = {1, 4} is a feasible one with processing sequence
J = {1, 3, 4} is not feasible
J = {1, 2, 4} is not feasible
J = {1, 4} is optimal

High level description of job sequencing algorithm
Procedure greedy job (D, J, n)
// J is the set of n jobs to be completed by their deadlines
{
J:={1};
 for i:=2 to n do
 {
 if (all jobs in J U{i} can be completed by their deadlines)

 then J:= ß J U {i};
 }
}

Greedy Algorithm for Sequencing unit time jobs

Procedure JS(d,j,n)

// d(i) ≥ 1, 1≤ i ≤ n are the deadlines, n ≥ 1. The jobs are ordered such that

// p1 ≥ p2 ≥ ……. ≥ pn .J[i] is the ith job in the optimal solution , i ≤ i ≤ k. Also, at

termination d[J[i]]≤ d [J[i+1]] ,1 ≤ i ≤ k

{

d[0]:=J[0]:=0; //initialize and J(0) is a fictious job with d(0) = 0 //

J[1]:=1; //include job 1

K:=1; // job one is inserted into J //

for i :=2 to n do // consider jobs in non increasing order of pi //

r:=k;

While ((d[J[r]]>d[i]) and (d[J[r]]#r)) do r:=r-1;

If ((d[J[r] ≤ d[i]) and d[i]>r)) then { //insert i into J[]

For q:=k to (r+1) step-1 do j[q+1]:=j[q];

J[r+1]:=i; k:=k+1;

} } return k;

}

3.4 Minimum Cost Spanning Trees

Spanning trees

Suppose you have a connected undirected graph
 -Connected: every node is reachable from every other node
 -Undirected: edges do not have an associated direction
Then a spanning tree of the graph is a connected subgraph in which there are no cycles

Finding a spanning tree:

To find a spanning tree of a graph, pick an initial node and call it part of the spanning tree do
a search from the initial node: each time you find a node that is not in the spanning tree, add
to the spanning tree both the new node and the edge you followed to get to it .

Minimizing costs

Suppose you want to supply a set of houses (say, in a new subdivision) with:
– electric power
– water
– sewage lines
– telephone lines

To keep costs down, you could connect these houses with a spanning tree (of, for example,
power lines) However, the houses are not all equal distances apart. To reduce costs even
further, you could connect the houses with a minimum-cost spanning tree.

Minimum-cost spanning trees

Suppose you have a connected undirected graph with a weight (or cost) associated with each
edge. The cost of a spanning tree would be the sum of the costs of its edges. A minimum-cost
spanning tree is a spanning tree that has the lowest cost.

3.5 Greedy Approach for Prim’s and kruskal’s algorithm:

Both Prim’s and Kruskal’s algorithms are greedy algorithms. The greedy approach works for
the MST problem; however, it does not work for many other problems.

Prim’s algorithm:

T = a spanning tree containing a single node s;
E = set of edges adjacent to s;
while T does not contain all the nodes
{
 remove an edge (v, w) of lowest cost from E
 if w is already in T then discard edge (v, w)
 else
 {
 add edge (v, w) and node w to T
 add to E the edges adjacent to w
 }
}

An edge of lowest cost can be found with a priority queue. Testing for a cycle is automatic

Prim’s Algorithm:

Initialization
a. Pick a vertex r to be the root

 b. Set D(r) = 0, parent(r) = null

c. For all vertices v ∈ V, v ≠ r, set D (v) = ∞
d. Insert all vertices into priority queue P,
 using distances as the keys

The MST initially consists of the vertex e, and we update the distances and parent for its
adjacent vertices.

Final Spanning tree

Running time of Prim’s algorithm (without heaps):

1. Initialization of priority queue (array): O (|V|)
2. Update loop: |V| calls

– Choosing vertex with minimum cost edge: O(|V|)
– Updating distance values of unconnected vertices: each edge is considered

only once during entire execution, for a total of O(|E|) updates

3. Overall cost without heaps:

Minimum-cost Spanning Trees
Example of MCST: Finding a spanning tree of G with minimum cost

Prim’s Algorithm Invariant:

At each step, we add the edge (u,v) s.t. the weight of (u,v) is minimum among all edges where
u is in the tree and v is not in the tree. Each step maintains a minimum spanning tree of the
vertices that have been included thus far. When all vertices have been included, we have a
MST for the graph.

Another Approach:
Create a forest of trees from the vertices. Repeatedly merge trees by adding “safe edges” until
only one tree remains. A “safe edge” is an edge of minimum weight which does not create a
cycle.

Kruskal’s algorithm:

 T = empty spanning tree;

E = set of edges;

N = number of nodes in graph;

 while T has fewer than N - 1 edges {

 remove an edge (v, w) of lowest cost from E

 if adding (v, w) to T would create a cycle

 then discard (v, w)

 else add (v, w) to T

 }

Finding an edge of lowest cost can be done just by sorting the edges
Running time bounded by sorting (or findMin)
O(|E|log|E|), or equivalently, O(|E| log|V|)

Initialization

a. Create a set for each vertex v ∈ V
b. Initialize the set of “safe edges” A comprising the MST to the empty set
c. Sort edges by increasing weight

Kruskal’s algorithm Invariant

After each iteration, every tree in the forest is a MST of the vertices it connects. Algorithm
terminates when all vertices are connected into one tree.

3.6 Optimal Merge Patterns

Problem
Given n sorted files, find an optimal way (i.e., requiring the fewest comparisons or record
moves) to pair wise merge them into one sorted file. It fits ordering paradigm.
Example

Three sorted files (x1, x2, x3) with lengths (30, 20, 10)

Solution 1: merging x1 and x2 (50 record moves), merging the result with x3 (60 moves) à

total 110 moves

Solution 2: merging x2 and x3 (30 moves), merging the result with x1 (60 moves) à total 90
moves

The solution 2 is better.
A greedy method (for 2-way merge problem)
At each step, merge the two smallest files. e.g., five files with lengths (20, 30, 10, 5, 30).

Total number of record moves = weighted external path length
The optimal 2-way merge pattern = binary merge tree with minimum weighted external path
length
Algorithm
 struct treenode
 {
 struct treenode *lchild, *rchild;
 int weight;
 };
 typedef struct treenode Type;
 Type *Tree(int n)
 // list is a global list of n single node
 // binary trees as described above.
 {
 for (int i=1; i<n; i++) {
 Type *pt = new Type;
 // Get a new tree node.
 pt -> lchild = Least(list); // Merge two trees with
 pt -> rchild = Least(list); // smallest lengths.
 pt -> weight = (pt->lchild)->weight
 + (pt->rchild)->weight;
 Insert(list, *pt);
 }
 return (Least(list)); // Tree left in l is the merge tree.
 }
Example

Time Complexity

If list is kept in non-decreasing order: O (n2)
If list is represented as a min heap: O (n log n)
3.7 Optimal Storage on Tapes

There are n programs that are to be stored on a computer tape of length L. Associated with
each program i is a length Li. Assume the tape is initially positioned at the front. If the
programs are stored in the order I = i1, i2… in, the time tj needed to retrieve program ij

 tj =

If all programs are retrieved equally often, then the mean retrieval time (MRT) =this problem
fits the ordering paradigm. Minimizing the MRT is equivalent to minimizing

D (I) =

 Example
 n=3 (l1, l2, l3) = (5, 10, 3) 3! =6 total combinations
 L1 l2 l3 = l1+ (l1+l2) + (l1+l2+l3) = 5+15+18 = 38/3=12.6
 n 3
 L1 l3 l2 = l1 + (l1+l3) + (l1+l2+l3) = 5+8+18 = 31/3=10.3
 n 3
 L2 l1 l3 = l2 + (l2+l1) + (l2+l1+l3) = 10+15+18 = 43/3=14.3
 n 3
 L2 l3 l1 = 10+13+18 = 41/3=13.6
 3
 L3 l1 l2 = 3+8+18 = 29/3=9.6 min
 3
 L3 l2 l1 = 3+13+18 = 34/3=11.3 min
 3 permutations at (3, 1, 2)

 Example
 n = 4, (p1, p2, p3, p4) = (100, 10, 1 5, 27) (d1, d2, d3, d4) = (2, 1, 2, 1)

Feasible solution Processing sequence value

1 (1,2) 2,1 110

2 (1,3) 1,3 or 3, 1 115

3 (1,4) 4, 1 127

4 (2,3) 2, 3 25

5 (3,4) 4,3 42

6 (1) 1 100

7 (2) 2 10

8 (3) 3 15

∑
=

j

1k
ik

L ∑
=

n

1j
jt

n

1

∑∑
= =

n

1j

j

1k
ik

L

9 (4) 4 27

Example

Let n = 3, (L1, L2, L3) = (5, 10, 3). 6 possible orderings. The optimal is 3, 1, 2

Ordering I d(I)

1,2,3 5+5+10+5+10+3 = 38

1,3,2 5+5+3+5+3+10 = 31

2,1,3 10+10+5+10+5+3 = 43

2,3,1 10+10+3+10+3+5 = 41

3,1,2 3+3+5+3+5+10 = 29

3,2,1, 3+3+10+3+10+5 = 34

3.8 TVSP (Tree Vertex Splitting Problem)

Let T= (V, E, W) be a directed tree. A weighted tree can be used to model a distribution
network in which electrical signals are transmitted. Nodes in the tree correspond to receiving
stations & edges correspond to transmission lines. In the process of transmission some loss is
occurred. Each edge in the tree is labeled with the loss that occurs in traversing that edge. The
network model may not able tolerate losses beyond a certain level. In places where the loss
exceeds the tolerance value boosters have to be placed. Given a networks and tolerance value,
the TVSP problem is to determine an optimal placement of boosters. The boosters can only
placed at the nodes of the tree.

 d (u) = Max { d(v) + w(Parent(u), u)}
 d(u) – delay of node v-set of all edges & v belongs to child(u)
 δ tolerance value

TVSP (Tree Vertex Splitting Problem)

If d (u)>= δ than place the booster.
d (7)= max{0+w(4,7)}=1
d (8)=max{0+w(4,8)}=4
d (9)= max{0+ w(6,9)}=2
d (10)= max{0+w(6,10)}=3 d(5)=max{0+e(3.3)}=1
d (4)= max{1+w(2,4), 4+w(2,4)}=max{1+2,4+3}=6> δ ->booster
d (6)=max{2+w(3,6),3+w(3,6)}=max{2+3,3+3}=6> δ->booster
d (2)=max{6+w(1,2)}=max{6+4)=10> δ->booster
d (3)=max{1+w(1,3), 6+w(1,3)}=max{3,8}=8> δ ->booster
Note: No need to find tolerance value for node 1 because from source only power is
transmitting.

3.9 Single-source Shortest Paths

Let G=(V,E) be a directed graph and a main function is C(e)(c=cost, e=edge) for the edges of
graph ‘G’ and a source vertex it will represented with V0 the vertices represents cities and
weights represents distance between 2 cities. The objective of the problem find shortest path
from source to destination. The length of path is defined to be sum of weights of edges on the
path. S[i] =T if vertex i present in set‘s’. S[i] =F if vertex i is not present in set‘s’

Formula
Min {distance[w],distance[u]+cost[u, w]}

 u-recently visited node w-unvisited node
Step-1 s[1]

s[1]=T dist[2]=10
s[2]=F dist[3]=α
s[3]=F dist[4]= α
s[4]=F dist[5]= α
s[5]=F dist[6]= 30
s[6]=F dist[7]= α
S[7]=F

Step-2 s[1,2] the visited nodes
W={3,4,5,6,7} unvisited nodes
U={2} recently visited node
s[1]=T w=3
s[2]=T dist[3]=α
s[3]=F min {dist[w], dist[u]+cost(u, w)}
s[4]=F min {dist[3], dist[2]+cost(2,3)}
s[5]=F min{α, 10+20}= 30
s[6]=F w=4 dist[4]= α
S[7]=F min{dist(4),dist(2)+cost(2,4)}
 min{α,10+ α}= α
W=5 dist[5]= α min{dist(5),dist(2)+cost(2,5)}

 min{α,10+ α}= α
W=6 dist[6]=30
Min{dist(6), dist(2)+cost(2,6)}=min{30,10+ α}=30
W=7, dist(7)= α min{dist(7),dist(2)+cost(2,7)}
min{α,10+ α}= α let min. cost is 30 at both 3 and 6 but

Recently visited node 2 have only direct way to 3, so consider 3 is min cost node from 2.
Step-3 w=4,5,6,7

s[1]=T s={1,2,3} w=4 ,dist[4]= α
s[2]=T min{dist[4],dist[3]+cost(3.4)}=min{α,30+15}=45
s[3]=T w=5, dist[5]= α min{dist(5), dist(3)+cost(3,5)}
s[4]=F min{α,30+5}=35 similarity we obtain
s[5]=F w=6, dist(6)=30 w=7 ,dist[7]= α so min cost is 30 at w=6 but
s[6]=F no path from 3 so we consider 5 node so visited nodes 1,2,3, 5
S[7]=F

Step-4 w=4,6,7 s={1,2,3,5}
s[1]=T w=4, dist[4]=45 min {dist[4], dist[5]+cost(5,4)}
s[2]=T min{45,35+ α}=45
s[3]=T w=6,dist[6]=30 min{dist[6],dist[5]+cost(5,6)}
s[4]=F min{30, 35+ α}=30
s[5]=T w=7,dist[7]= α min{dist[7],dist[5]+cost(5,7)}
s[6]=F min{α, 35+7}=42
S[7]=F here min cost is 30 at 6 node but there is no path from 5 yo 6, so we consider
7 , 1,2,3,5,7 nodes visited.

Therefore the graph traveled from source to destination
Single source shortest path is drawn in next slide.

Design of greedy algorithm

Building the shortest paths one by one, in non-decreasing order of path lengths

e.g., 1à4: 10

 1à4à5: 25
 …

We need to determine 1) the next vertex to which a shortest path must be generated and 2) a
shortest path to this vertex.

Notations

S = set of vertices (including v0) to which the shortest paths have already been generated
Dist (w) = length of shortest path starting from v0, going through only those vertices that are
in S, and ending at w.
Three observations
If the next shortest path is to vertex u, then the path begins at v0, ends at u, and goes through
only those vertices that are in S. The destination of the next path generated must be that of
vertex u which has the minimum distance, dist (u), among all vertices not in S.
Having selected a vertex u as in observation 2 and generated the shortest v0 to u path, vertex
u becomes a member of S.

DIJKSTRA’S Shortest Path Algorithm

Procedure SHORT-PATHS (v, cost, Dist, n)
// Dist (j) is the length of the shortest path from v to j in the //graph G with n vertices; Dist
(v)= 0 //
Boolean S (1:n); real cost (1:n,1:n), Dist (1:n); integer u, v, n, num, i, w
// S (i) = 0 if i is not in S and s(i) =1 if it is in S//

// cost (i, j) = +α if edge (i, j) is not there//
// cost (i,j) = 0 if i = j; cost (i, j) = weight of < i, j >

// for iß1 to do // initialize S to empty

// S(i) ß0; Dist (i)ß cost(v, i)
Repeat
// initially for no vertex shortest path is available

// S (v)ß1; dist(v)ß0// Put v in set S //

for numß2 to n-1 do // determine n-1 paths from// //vertex v //
choose u such that Dist (u)=min{dist(w)} and S(w)=0

S (u)ß1 // Put vertex u in S //

Dist (w)ßmin (dist(w),Dist(u) + cost (u, w))
Repeat

repeat
end SHORT - PATHS
Overall run time of algorithm is O ((n+|E|) log n)

Example:

Chapter-4

Dynamic programming

4.1 The General Method
Dynamic Programming: is an algorithm design method that can be used when the solution
to a problem may be viewed as the result of a sequence of decisions.

The shortest path

To find a shortest path in a multi-stage graph

Apply the greedy method

 the shortest path from S to T
 1 + 2 + 5 = 8

4.2 Principle of optimality

Suppose that in solving a problem, we have to make a sequence of decisions D1, D2… Dn. If
this sequence is optimal, then the last k decisions, 1 k n must be optimal.

Ex: The shortest path problem

If i1, i2… j is a shortest path from i to j, then i1, i2… j must be a shortest path from i1to j
If a problem can be described by a multistage graph, then it can be solved by dynamic
programming.

4.2.1 Forward approach and backward approach

Note that if the recurrence relations are formulated using the forward approach then the
relations are solved backwards. i.e., beginning with the last decision

On the other hand if the relations are formulated using the backward approach, they are
solved forwards.

To solve a problem by using dynamic programming

• Find out the recurrence relations.

• Represent the problem by a multistage graph.

Backward chaining vs. forward chaining

Recursion is sometimes called “backward chaining”: start with the goal you want choosing
your sub goals on an as-needed basis.

• Reason backwards from goal to facts (start with goal and look for support for it)
Another option is “forward chaining”: compute each value as soon as you can, in
hope that you’ll reach the goal.

• Reason forward from facts to goal (start with what you know and look for things you
can prove)

Using forward approach to find cost of the path:

Cost (i, j) = min {c(j, l) + cost(i+1, l)}

L Vi+1ϵ
<j, l> Eϵ

Algorithm 4.1 Multistage graph pseudo code corresponding to the forward approach Using
backward approach:

Let bp (i, j) be a minimum cost path from vertex s to vertex j in Vi Let bcost (i,j) be cost of
bp(i, j). The backward apporach to find minimum cost is:

bcost (i, j) = min {bcost (i-1,l) +c(l ,j)}
l Vi+1ϵ
<j,l> Eϵ

Since bcost (2,j) = c(1,j) if <1,j> E and bcost (2,j) = ∞ϵ
if <i,j> E, bcost (i,j) can be computed using above formula.ϵ

Algorithm Bgraph(G,k,n,p)
{
bcost[1]:=0.0;
For j:=2 to n do
{ //compute bcost[j].
Let r be such that <r,j> is an edge of G and bcost[r] + c[r,j] is mimimum;
bcost[j]:=bcost[r]+c[r,j];
d[j]:=r;
}
//Find a minimum-cost path
P[1]:=1;p[k]:=n;
For j:=k-1 to 2 do p[j]:= d[p[j+1]];
}

Algorithm: 4.1.1 Multi-stage graph pseudo code for corresponding backward approach.

The shortest path in multistage graphs:

 The greedy method cannot be applied to this case: (S, A, D, T) 1+4+18 = 23.
 The real shortest path is:

 (S, C, F, T) 5+2+2 = 9.

Dynamic programming approach (forward approach)

d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

d(A,T) = min{4+d(D,T), 11+d(E,T)}
 = min{4+18, 11+13} = 22.

d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)}
 = min{9+18, 5+13, 16+2} = 18.

d (C, T) = min{ 2+d(F, T) } = 2+2 = 4
d (S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}
 = min{1+22, 2+18, 5+4} = 9.
The above way of reasoning is called backward reasoning.
Backward approach (forward reasoning):
 d(S, A) = 1

d(S, B) = 2
d(S, C) = 5

d(S,D) = min{d(S,A)+d(A,D),d(S,B)+d(B,D)}
 = min{ 1+4, 2+9 } = 5
d(S,E) = min{d(S,A)+d(A,E), d(S,B)+d(B,E)}
 = min{ 1+11, 2+5 } = 7
d(S,F) = min{d(S,B)+d(B,F), d(S,C)+d(C,F)}
 = min{ 2+16, 5+2 } = 7
d(S,T) = min{d(S, D)+d(D, T), d(S,E)+d(E,T), d(S, F)+d(F, T)}
 = min{ 5+18, 7+13, 7+2 }
 = 9

4.3 Multistage Graphs

Multistage graph problem is to determine
shortest path from source to destination.
A multistage graph G=(V,E) is a directed
graph in which the vertices are partitioned
into k>=2 disjoint sets Vi, 1<=i<=k.

The vertex s is source and t is the sink.
Let c(i,j) be the cost of edge <i, j>. The cost of a path from s to t is the sum of costs of the
edges on the path. The multistage graph problem is to find a minimum-cost path from s to t.

A dynamic programming formulation for a k-stage graph problem is obtained by first
noticing that every s to t path is the result of a sequence of k-2 decisions.

The ith decision involve determining which vertex in Vi+1, 1<=i<=k-2, is on the path. It is
easy to see that principal of optimality holds.
Let p(i,j) be a minimum-cost path from vertex j in Vi to vertex t. Let cost(i,j) be the cost of
this path.

The time for the for loop of line 7 is Θ(|V| + |E|), and the time for the for loop of line
16 is Θ(k), Hence, the total time is Θ(|V| + |E|).
The backward trace from vertex 1 to n also works.
The algorithm also works for the edges crossing more than 1 stage.

4.4 All-pairs Shortest Paths

Let G=(V,E) be a directed graph with n vertices. The cost I,j=0 if i=j , cost I,j is ∞ if i≠j, <i,j>
not blelongs E

The cost i,j>0 iif i≠j <i,j> not belongs E

All pairs shortest path problem is to determine the matrix ‘A’ such that A(i,j) is the length of
the shortest path from itoj. The matrix ‘A’ can be obtained by solving ‘n’ single source
problems by using shortest path algorithm.

Idea

Label the vertices with integers 1..n

Restrict the shortest paths from i to j to consist of vertices 1..k only (except i and j)

Iteratively relax k from 1 to n.

Find shortest distance from i to j using vertices 1...k

Example

 i=4, j=5,k=0 i=4, j=5,k=1

 i=4, j=5,k=2 i=4, j=5,k=3

4.4.1 Shortest Path: Optimal substructure

Let G be a graph, Wij be the length of edge (i, j), where 1<=i, j<= n, and d(k)ij be the length of
the shortest path between nodes I and j, for 1<= i, j, k<=n, without passing through any
nodes numbered greater than k.

Recurrence:

At d=1
d1 (1,1) = min{d0 (1,1), d0 (1,1,)+ d0 (1,1,)} = 0

d1 (1,2) = min{d0 (1,2), d0 (1,1)+d0 (1,2)} = min{4, 0+4}=4
d1 (1,3) = min {d0 (1,3), d0 (1,1)+d0 (1,3)} = min{11,0+11} = 11
d1 (2,1) = min{d0 (2,1), d0 (2,1)+ d0 (1,1)}
d1 (2,2) = min{d0 (2,2), d0 (2,1)+d0 (1,2)} = 0
d1 (2,3) = min{d0 (2,3), d0 (2,1)+d0 (1,3)}= min{2,6+11}=2
d1 (3,1) = min{d0 (3,1), d0 (3,1) + d0 (1,1)} = min{3, 3+0} = 3
d1 (3,2) = min{d0 (3,2), d0 (3,1)+d0 (1,2)}= min {∞, 3+4}=7
d1 (3,3) = 0
At d=2
d2 (1,1) = min{d1 (1,1), d1 (1,2)+ d1 (2,1,)} = min{ 0, ∞} = 0
d2 (1,2) = min{d1 (1,2), d1 (1,2)+d1 (2,2)} =4
d2 (1,3) = min {d1 (1,3), d1 (1,2)+d1 (2,3)} = 6
d2 (2,1) = min{d1 (2,1), d1 (2,2)+ d1 (2,1)} =6
d2 (2,2) = min{d1 (2,2), d1 (2,1)+d1 (2,2)} = min{0, 0+0} = 0
d2 (2,3) = min{d1 (2,3), d1 (2,1)+d1(2,3)}= 2
d2 (3,1) = min{d1 (3,1), d1 (3,2) + d1 (2,1)} = min{3, 7+6} = 3
d2 (3,2) = min {7, 7+0}=7
d2 (3,3) = 0
At d=3
d3 (1,1) = min{ 0, somevalue} = 0
d3 (1,2) = min{4,6+0}=4
d3 (1,3) = min {6,6+0)} = 6
d3 (2,1) = min{6, 2+3}=5
d3 (2,2) = 0
d3 (2,3) = min{2,2}=2
d3 (3,1) = min{3, 3+0} = 3
d3 (3,2) = min {7, 7+0}=7
d3 (3,3) = 0

Algorithm 4.2 All-Pairs Shortest Paths algorithm

• Find the distance between every pair of vertices in a weighted directed graph G.

• We can make n calls to Dijkstra’s algorithm (if no negative edges), which takes
O(nmlog n) time.

• Likewise, n calls to Bellman-Ford would take O (n2m) time.

• We can achieve O (n3) time using dynamic programming (similar to the Floyd-
Warshall algorithm).

Example for all pairs shortest path:

Note that on the last pass no improvements could be found for D(5) over D(4). The final
matrices D(5) and P(5) indicate, for instance, that the shortest path from node 1 to node 5 has
length d(1,5) = 8 units and that this shortest path is the path {1, 3, 4, 2, 5}.

To identify that shortest path, we examined row 1 of the P(5) matrix. Entry p5 says that the
predecessor node to 5 in the path from 1 to 5 is node 2; then, entry p5 (1, 2) says that the
predecessor node to 2 in the path from 1 to 2 is node 4; similarly, we backtrack the rest of the
path by examining p5(1, 4) (= 3) and p5(1, 3) = 1. In general, backtracking stops when the
predecessor node is the same as the initial node of the required path.

For another illustration, the shortest path from node 4 to node 3 is d (4, 3) = 8 units long and
the path is {4, 2, 1, 3}. The predecessor entries that must be read are, in order, p5 (4, 3) = 1, p5

(4, 1) = 2, and finally p5(4, 2) = 4--at which point we have "returned" to the initial node.

4.5 Single-Source Shortest Paths

4.5.1 General Weights

Let distk[u] be the length of a shortest path from the source vertex v to vertex u
containing at most k edges.

Algorithm 4.3 Bellman and ford algorithm to compute shortest paths

Bellman and ford algorithm: Works even with negative-weight edges

It must assume directed edges (for otherwise we would have negative-weight cycles)

Iteration i finds all shortest paths that use i edges.

Running time: O(nm).
It Can be extended to detect a negative-weight cycle if it exists.

4.6 Optimal Binary Search Trees

Definition: Binary search tree (BST) A binary search tree is a binary tree; either it is empty or
each node contains an identifier and

1. All identifiers in the left sub tree of T are less than the identifiers in the root node T.
2. All the identifiers the right sub tree is greater than the identifier in the root node T.
3. The right and left sub tree are also BSTs.

 Algorithm for searching an identifier in the tree ‘T’

Procedure SEARCH (T X I)
// Search T for X, each node had fields LCHILD, IDENT, RCHILD//
// Return address I pointing to the identifier X// //Initially T is pointing to tree.
//ident(i)=X or i=0
//I ß T
While I ≠ 0 do
 case : X < Ident(i) : I ßLCHILD(i)
 : X = IDENT(i) : RETURN i

 : X > IDENT(i) : I ß RCHILD(i)
 end case
repeat
end SEARCH

Optimal Binary Search trees – Example

If each identifier is searched with equal probability the average number of comparisons for
the above tree is 1+2+2+3+4/5 = 12/5.

• Let us assume that the given set of identifiers are {a1, a2...an} with a1<a2<…….<an.
• Let Pi be the probability with which we are searching for ai.
• Let Qi be the probability that identifier x being searched for is such that ai<x<ai+1

0≤i≤n, and a0=-∞ and an+1=+∞.
• Then ∑Qi is the probability of an unsuccessful search.

 0≤i≤ n
 ∑P(i) + ∑Q(i) = 1. Given the data,
 1≤i≤n 0≤i≤n

let us construct one optimal binary search tree for (a1……….an).
• In place of empty sub tree, we add external nodes denoted with squares.
• Internet nodes are denoted as circles.

4.7 Construction of optimal binary search trees

i) A BST with n identifiers will have n internal nodes and n+ 1 external node.
ii)Successful search terminates at internal nodes unsuccessful search terminates at external
 nodes.
iii)If a successful search terminates at an internal node at level L, then L iterations of the
 loop in the algorithm are needed.
iv)Hence the expected cost contribution from the internal nodes for ai is P (i) * level (ai).
v)Unsuccessful search terminates at external nodes i.e. at i = 0.
vi)The identifiers not in the binary search tree may be partitioned into n+1 equivalent
classes

Ei 0≤i≤n.
Eo contains all X such that X≤ai

Ei contains all X such that a<X<=ai+1 1≤i≤n
En contains all X such that X > an

For identifiers in the same class Ei, the search terminates at the same external node. If the
failure node for Ei is at level L, then only L-1 iterations of the while loop are made

∴ The cost contribution of the failure node for Ei is Q (i) * level (Ei) -1)

Thus the expected cost of a binary search tree is:
 ∑P(i) * level (ai) + ∑Q(i) * level(Ei) – 1) ……(2)
 1≤i≤n 0≤i≤n

An optimal binary search tree for {a1……., an} is a BST for which (2) is minimum.
Example: Let {a1, a2, a3} ={do, if, stop}

With equal probability P (i) = Q(i) = 1/7.

Let us find an OBST out of these.
 Cost(tree a) = ∑P(i)*level a(i) + ∑Q(i)*level (Ei) -1

 1≤i≤n 0≤i≤n
 (2-1) (3-1) (4-1) (4-1)
 =1/7[1+2+3 + 1 + 2 + 3 + 3] = 15/7
Cost (tree b) =17[1+2+2+2+2+2+2] =13/7

Cost (tree c) =cost (tree d) =cost (tree e) =15/7
∴ tree b is optimal.

If P(1) =0.5 ,P(2) =0.1, P(3) =0.005 , Q(0) =.15 , Q(1) =.1, Q(2) =.05 and Q(3) =.05
find the OBST.
Cost (tree a) = .5 x 3 +.1 x 2 +.05 x 3 +.15x3 +.1x3 +.05x2 +.05x1 = 2.65
Cost (tree b) =1.9 , Cost (tree c) =1.5 ,Cost (tree d) =2.05 , Cost (tree e) =1.6.
Hence tree C is optimal.
To obtain a OBST using Dynamic programming we need to take a sequence of
decisions regard. The construction of tree.
First decision is which of ai is being as root.
Let us choose ak as the root. Then the internal nodes for a1,…….,ak-1 and the external
nodes for classes Eo,E1,……,Ek-1 will lie in the left sub tree L of the root. The
remaining nodes will be in the right sub tree R.

Define

Cost (L) =∑P(i)* level(ai) + ∑Q(i)*(level(Ei)-1)
 1≤i≤k 0≤i≤k

Cost(R) =∑P(i)*level(ai) + ∑Q(i)*(level(Ei)-1)
 k≤i≤n k≤i≤n
Tij be the tree with nodes ai+1,…..,aj and nodes corresponding to Ei,Ei+1,…..,Ej.

Let W (i, j) represents the weight of tree Tij.

W(i, j)=P(i+1) +…+P(j)+Q(i)+Q(i+1)…Q(j)=Q(i) +∑j [Q(l)+P(l)]
 l=i+1

The expected cost of the search tree in (a) is (let us call it T) is
 P(k) + cost(l) + cost(r) + W(0,k-1) + W(k, n)

W (0, k-1) is the sum of probabilities corresponding to nodes and nodes belonging to
equivalent classes to the left of ak.

W (k, n) is the sum of the probabilities corresponding to those on the right of ak.

 ak

L R

(a) OBST with root ak

4.8 0-1 Knapsack

If we are given ‘n’ objects and a knapsack or a bag, in which the object ‘ i’ has weight ‘w i’ is
to be placed, the knapsack has capacity ‘N’ then the profit that can be earned is p i x i. The
objective is to obtain filling of knapsack with maximum profits is to

n=no of objects i=1,2,….n.; m=capacity of the bag ;
wi =weight of object I; Pi =profit of the object i.

In solving 0/1 knapsack problem two rules are defined to get the solution.
Rule1: When the weight of object(s) exceeds bag capacity than discard that pair(s).
Rule2: When (pi,wi) and (pj,wj) where pi ≤pjand wi ≥wjthan (pi,wi) pair will be discarded. This
rule is called purging or dominance rule.Applying dynamic programming method to calculate
0/1 knapsack problem the formula equation is: S1

i ={(P,W)|(P-pi , W-wi) є Si }

Rule 1:

Applying rule to the above pairs, where weight exceeds knapsack capacity discards the pair.
In the above (7, 7), (8,9) pairs are discarded.

Rule 2(purging or dominance): Applying rule to the remaining pairs after discarded pairs i.e
on 6 pairs

Pairs 3≤5 and 5≥4 pairs in above shown so that pair (3,5) pair discarded.
So the solution pair(s) is (6,6) ;
Solution vector: (p1,p2,p3)=(1,2,5)=>(p1,p3)=(1,5)
(w1,w2,w3)=(2,3,4)=>(w1,w3)=(2,4)
The solution vector is (1,0,1)

4.9 Traveling Salesperson Problem
A salesperson would like to travel from one city to the other (n–1) cities just once then back
to the original city, what is the minimum distance for this travel?

The brute-and-force method is trying all possible (n–1)! Permutations of (n–1) cities and
picking the path with the minimum distance.

There are a lot of redundant computations for the brute-and-force method such as the
permutations of 6 cities are 1234561, …, 1243561, …., 1324561, …, 1342561, …, 1423561,
…, 1432561, …

The function g(1,V-{1}) is the length of an optimal salesperson tour. From the principal of
optimality it follows that g (1, V-[1}) = min2≤k≤n {c1k + g{k,V-{1,k})}
Generalizing above one we obtain (for I not belong S) g (i, S) = minjE s{ciJ+ g(j, S-{j})}
The method computes from vertex 1 backward to the other vertices then return to vertex 1.

Let g(i,S) be the length of a shortest path starting at vertex i, going through all vertices in S,
and terminating at vertex 1.

The function g(1,V-{1}) is the length of an optimal salesperson tour. From the principal of
optimality it follows that

Eqn. 1 solved for g(1,V-{1}) if we know g (k,V-{1,k}) for all choices of k. The g values can
be obtained by using eqn. 2 clearly, g (i, ø) = ci1, 1≤i ≤n. Hence we use g (i, S) for all S size
1.then g (i, S) for S=2 and so on.

Example

4.10 Flow shop scheduling

Let n be the no. of jobs, each may be requiring m task.

Let T1i, T2i… Tmi where i=1 to n to be performed where Tmi is the Ith job of mth task. The task
‘Tji to be processed on the processor ‘Tj’ where j=1,2,………m. The time required to
complete the task Tji is tji .

A schedule for ‘n’ jobs is an assignment of tasks to the time intervals on the processors.

Constraints: No two processors may have more than one task assign to it in anytime interval.

Objective: The objective of flow shop scheduling is to find the optimal finishing time (OFT)
of the given schedule ‘S’.

(Optimal Finishing Time OFT schedule ‘S’)
Mean flow time for the schedule ‘S’ is

There are 2 possible scheduling:

1) Non-preemptive schedule:-it is in which the processing of a task on any processor is not
terminate until the task is completed.
2) Preemptive scheduling:-It is in which the processing of a task on any processor is
terminated before the task is completed.

Problem:
2 0 p1

j = 3 3 p2
5 2 p3

j=schedule t11

P1, p2, p3= processors or tasks of jobs

T11 –first job of the first task

Chapter-5
Basic Traversal and Search Techniques

5.1 Techniques for Binary Trees

Binary Tree

A binary tree is a finite set of nodes which is either empty or consists of a root and
two disjoint binary trees called the left sub tree and the right sub tree.
In a traversal of a binary tree, each element of the binary tree is visited exactly at once.
During the visiting of an element, all actions like clone, display, evaluate the operator etc is
taken with respect to the element. When traversing a binary tree, we need to follow linear
order i.e. L, D, R where
L->Moving left
D->printing the data
R->moving right

 We have three traversal techniques on binary tree. They are

• In order

• Post order

• Pre order

Examples

For fig: 1

In order: A-B-C-D-E-F-G-H-I
Post order: A-C-E-D-B-H-I-G-F
Pre order: F-B-A-D-C-E-G-I-H

Preorder, post order and in order algorithms

Algorithm preorder(x)

Input: x is the root of a sub tree.

1. If x ≠ NULL

2. Then output key(x);

3. Preorder (left(x));

4. Preorder (right(x));

Algorithm postorder(x)

Input: x is the root of a subtree

1. If x ≠ NULL

2. Then postorder(left(x));;

3. Postorder(right(x));

4. Outputkey(x);

Algorithm inorder(x)

Input: x is the root of a subtree

1. If x≠ null

2. Then inorder(left(x));

3. Outputkey(x);

4. Inorder(right(x));

Exercises

5.2 Techniques for Graphs

Graph: The sequence of edges that connected two vertices.
A graph is a pair (V, E), where
V is a set of nodes, called vertices
E is a collection (can be duplicated) of pairs of vertices, called edges
Vertices and edges are data structures and store elements.

Types of graphs: Graphs are of three types.

a. Directed/Undirected: In a directed graph the direction of the edges must be
considered

 Fig 5.1 Fig 5.2

b. Weighted/ Unweighted: A weighted graph has values on its edge.

 Fig 5.3 Fig 5.4

c. Cyclic/Acyclic: A cycle is a path that begins and ends at same vertex and A graph with no
cycles is acyclic.

Representation of graphs

Graphs can be represented in three ways

(i) Adjacency Matrix: A V x V array, with matrix[i][j] storing whether there is an edge
between the ith vertex and the jth vertex. This matrix is also called as “Bit matrix” or
“Boolean Matrix”

(ii) Adjacency list: One linked list per vertex, each storing directly reachable vertices .

(iii) Linked List or Edge list:

Graph traversal techniques

“The process of traversing all the nodes or vertices on a graph is called graph traversal”.

We have two traversal techniques on graphs
 DFS
 BFS

Depth First Search

The DFS explore each possible path to its conclusion before another path is tried. In other
words go as a far as you can (if u don’t have a node to visit), otherwise, go back and try
another way. Simply it can be called as “backtracking”.

Steps for DFS

(i) Select an unvisited node ‘v’ visits it and treats it as the current node.

(ii) Find an unvisited neighbor of current node, visit it and make it new current node

(iii) If the current node has no unvisited neighbors, backtrack to its parent and make it as a
new current node

(iv) Repeat steps 2 and 3 until no more nodes can be visited

(v) Repeat from step 1 for remaining nodes also.

Implementation of DFS

DFS (Vertex)
{
Mark u as visiting
For each vertex V directly reachable from u
If v is unvisited
DFS (v)
}

Unexplored vertex: The node or vertex which is not yet visited.

Visited vertex: The node or vertex which is visited is called ‘visited vertex’ i.e. can be called
as “current node”.

Unexplored edge: The edge or path which is not yet traversed.

Discovery edge: It is opposite to unexplored edge, the path which is already traversed is
known as discovery edge.

Back edge: If the current node has no unvisited neighbors we need to backtrack to its parent
node. The path used in back tracking is called back edge.

For the following graph the steps for tracing are as follows:

Properties of DFS

i) DFS (G, v) visits all the vertices and edges in the connected component of v.

ii) The discovery edges labeled by DFS (G, v) form a spanning tree of the connected
component of v.

Tracing of graph using Depth First Search

Exercise
1.

Depth: W-U-V-Y-X-Z

2.

Depth: A-B-C-E-D

3

Depth: 1-2-3-4-5-6-7-8-9-10-11-12.

5.3 Breadth First Search

It is one of the simplest algorithms for searching or visiting each vertex in a graph. In this
method each node on the same level is checked before the search proceeds to the next level.
BFS makes use of a queue to store visited vertices, expanding the path from the earliest
visited vertices
Breadth: a-b-c-d-e-f-g-h-i-j-k

Steps for BFS:

1. Mark all the vertices as unvisited.

2. Choose any vertex say ‘v’, mark it as visited and put it on the end of the queue.

3. Now, for each vertex on the list, examine in same order all the vertices adjacent to ‘v’

4. When all the unvisited vertices adjacent to v have been marked as visited and put it on the
end (rear of the queue) of the list.

5. Remove a vertex from the front of the queue and repeat this procedure.

6. Continue this procedure until the list is empty.

Implementation of BFS

While queue Q not empty
De queue the first vertex u from Q
For each vertex v directly reachable from u
If v is unvisited
En queue v to Q
Mark v as visited
1 Initially all vertices except the start vertex are marked as unvisited and the queue contains
the start vertex only.

Explored vertex: A vertex is said to be explored if all the adjacent vertices of v are visited.
Example 1: Breadth first search for the following graph:

Properties of BFS

Notation: Gs (connected component of s)

i) BFS (G, s) visits all the vertices and edges of Gs
ii) The discovery edges labeled by BFS (G, s) form a spanning tree Ts of G
iii) For each vertex v in Li
a. The path of Ts from s to v has i edges
b. Every path from s to v in Gs has at least i edges.

Complexity of BFS

Step1: read a node from the queue O (v) times.
Step2: examine all neighbors, i.e. we examine all edges of the currently read node. Not
oriented graph: 2*E edges to examine
Hence the complexity of BFS is O (V + 2*E)

Tracing of graph using Breadth first search:

 BFS: a f h e g i d j k c l n b m o

BFS: 7-11-8-2-9-10-5-3

BFS: A-B-C-D-E-F-G-H

5.4 Connected Components and Spanning Trees

Connected component: If G is connected undirected graph, then we can visit all the vertices
of the graph in the first call to BFS. The sub graph which we obtain after traversing the graph
using BFS represents the connected component of the graph.

Thus BFS can be used to determine whether G is connected. All the newly visited vertices on
call to BFS represent the vertices in connected component of graph G. The sub graph formed
by theses vertices make the connected component.

Spanning tree of a graph: Consider the set of all edges (u, w) where all vertices w are
adjacent to u and are not visited. According to BFS algorithm it is established that this set of
edges give the spanning tree of G, if G is connected. We obtain depth first search spanning
tree similarly
These are the BFS and DFS spanning trees of the graph G

Bi-connected Components

A connected undirected graph is said to be bi-connected if it remains connected after removal
of any one vertex and the edges that are incident upon that vertex.
In this we have two components.
i. Articulation point: Let G= (V, E) be a connected undirected graph. Then an articulation
point of graph ‘G’ is a vertex whose articulation point of graph is a vertex whose removal
disconnects the graph ‘G’. It is also known as “cut point”.

ii. Bi-connected graph: A graph ‘G’ is said to be bi-connected if it contains no-articulation
point.

Articulation points for the above undirected graph are B, E, F

i) After deleting vertex B and incident edges of B, the given graph is divided into two
components

ii) After deleting the vertex E and incident edges of E, the resulting components are

iii) After deleting vertex F and incident edges of F, the given graph is divided into teo
components.

Note: If there exists any articulation point, it is an undesirable feature in communication
network where joint point between two networks failure in case of joint node fails.

Algorithm to construct the Bi- Connected graph

1. For each articulation point ‘a’ do

2. Let B1, B2, B3 ….Bk are the Bi-connected components

3. Containing the articulation point ‘a’

4. Let Vi E Bi, Vi # a i<=i<=k

5. Add (Vi,Vi+1) to Graph G.

Vi-vertex belong Bi
Bi-Bi-connected component
 i- Vertex number 1 to k

a- articulation point

Exercise

Chapter-6
Backtracking

6.1 Background

Suppose, if you have to make a series of decisions, among various choices, where you don’t
have enough information to know what to choose. Each decision leads to a new set of
choices. Some sequence of choices may be solution to your problem. Backtracking is a
methodical way of trying out various sequences of decisions, until you find one that “works”.

• Backtracking is used to solve problems in which a sequence of objects is chosen
from a specified set so that the sequence satisfies some criterion.

• We call a node non promising if when visiting the node we determine that it cannot
possibly lead to a solution. Otherwise, we call it promising.

• In summary, backtracking consists of
• Doing a depth-first search of a state space tree,

• Checking whether each node is promising, and, if it is non promising, backtracking
to the node’s parent.
• This is called pruning the state space tree, and the sub tree consisting of the visited
nodes is called the pruned state space tree.

• Definition: A general algorithm for finding solution(s) to a computational problem
by trying partial solutions and then abandoning them ("backtracking") if they are not
suitable.

Back tracking example problem

Find out all 3-bit binary numbers for which the sum of the 1's is greater than or equal to 2.
The only way to solve this problem is to check all the possibilities:
 (000, 001, 010... 111)

6.2 General Back tracking algorithm

Step 1: We build a partial solution v = (a (1), a (2)... a (k)), extend it and test it.
 Step 2: If the partial solution is still a candidate solution
 Proceed.
 Else
 Delete a (k) and try another possible choice for a (k).
Step 3: If possible choices of a (k) are exhausted, backtrack and try the next choice for a (k-1)
In case of Greedy method and Dynamic programming techniques, we will use Brute Force
approach. It means we will evaluate all possible solutions, among which we select one
solution as optimal solution. In back tracking technique, we will get same optimal solution
with less number of steps. The main advantage of back tracking is, if a partial solution (X1,
X2, X3 ….Xi) can’t lead to optimal solution then (Xi+1 …...X n) solution may be ignored
entirely.

Explicit constrains: These are the rules which restrict each Xi to take on values only from a
given set.

Implicit constraints: These are the rules which determine which of the tuples in the solution
space satisfies the criterion functions.
Terminology used in this method.
1. Criterion function: It is a function P(X1, X2… X n) which needs to be maximized or
minimized for a given problem.

2. Solution Space: All tuples that satisfy the explicit constraints define a possible solution
space for a particular instance ‘I’ of the problem

3. Problem state: Each node in the tree organization defines a problem state.

4. Solution States: These are those problem states S for which the path form the root to S
define a tuple in the solution space.

5. State space tree: If we represent solution space in the form of a tree then the tree is referred
as the state space tree.

6. Answer States: These solution states S for which the path from the root to S defines a tuple
which is a member of the set of solution (i.e. it satisfies the implicit constraints) of the
problem.

7. Live node: A node which has been generated and all of whose children have not yet been
generated is live node.

8. E-node: The live nodes whose children are currently being generated is called E-node
(node being expanded)

9. Dead node: It is a generated node that is either not to be expanded further or one for which
all of its children has been generated.
10. Bounding function: It will be used to kill live nodes without generating all their children

11. Branch and bound: It is a method in which E-node remains E-node until it is dead.

Applications of Backtracking
producing all permutations of a set of values

parsing languages

Games: anagrams, crosswords, word jumbles, 8 queens

Combinatory and logic programming

Example Applications

i. 4 queen’s problem

ii. 8 queen’s problem

iii. N queen’s problem

iv. Sum of subsets problem.

6.3 Queens problem

The objective of this problem is to place 4 queens on 4X4 chess board in such a way that no
two queens should placed in the same row, same column or diagonal position.
Explicit constraint: 44 ways
Implicit constraints: No two queens should in same row, same column or diagonal position.

Searching the solution space for this problem by using a tree organization.

A portion of tree that is generated during backtracking is

Explanation

i)If (x1….xi) is the path to the current E-node, a bounding function has the criterion that
(x1...xi+1) represents a chessboard configuration, in which no queens are attacking.

ii)A node that gets killed as a result of the bounding function has a B under it.

iii)We start with root node as the only live node. The path is (); we generate a child node 2.

iv)The path is (1).This corresponds to placing queen 1 on column 1.

v)Node 2 becomes the E node. Node 3 is generated and immediately killed. (Because x1=1,
x2=2).

vi)As node 3 is killed, nodes 4,5,6,7 need not be generated.

vii)Node 8 is generated, and the path is (1, 3).

viii)Node 8 gets killed as all its children represent board configurations that cannot lead to
answer.

ix)We backtrack to node 2 and generate another child node 13.

x)But the path (1, 4) cannot lead to answer nodes.

So, we backtrack to 1 and generate the path (2) with node 18.

We observe that the path to answer node is (2 4 1 3)

6.4 8-Queens Problem

Similar to 4Queens problem, in 8Queens problem also has the same objective that no two
queens should place in the same row, same column or diagonal position.

a) Solution is (4, 7, 3, 8, 2, 5, 1, 6) b) Solution is (4, 6, 8, 3, 1, 7, 5, 2)

N-Queens problem

 In implementing the n – queens problem we imagine the chessboard as a two-dimensional
array A (1: n, 1: n). The condition to test whether two queens, at positions (i, j) and (k, l) are
on the same row or column is simply to check I = k or j = l. The conditions to test whether
two queens are on the same diagonal or not are to be found.

Observe that

i) For the elements in the upper left to lower right diagonal, the row -column values are same
or row- column = 0,

E.g. 1-1=2-2=3-3=4-4=0

ii) For the elements in the upper right to the lower left diagonal, row + column value is the
same e.g.

1+4=2+3=3+2=4+1=5

Thus two queens are placed at positions (i, j) and (k, l), then they are on the same diagonal
only if
i – j = k - l or i + j = k+ l
(or)
j - l = i - k or j - l = k – I

Two queens lie on the same diagonal if and only if |j – l| = |i - k|

Time complexity: O (n!)

6.5 Sum of subsets problem

If there are n positive numbers given in a set. Then the desire is to find all possible subsets of
the contents of which to add onto a predefined value M. In other words, let there be n
elements given by the set W= (W1, W2… W3) then find out all the subsets from whose sum
is M.
Briefly its goal is to maximize the total value of the solution (M) items while not making the
total weight exceed W. If we sort the weights in non decreasing order before doing the
search, there is an obvious sign telling us that a node is non promising.

Let total be the total weight of the remaining weights, a node at the ith level is non promising
if Weight + total > W

Visualize a tree in which the children of the root indicate whether or not value has been
picked (left is picked, right is not picked).

Sort the values in non-decreasing order so the lightest value left is next on list.

Weight is the sum of the weights that have been included at level i

Let weight be the sum of the weights that have been included up to a node at level i. Then, a
node at the i th level is non promising if weight + wi +1 > W

Simple choice for the bounding Function is Bk (X1 … Xk) = true iff

Clearly x1 …xk can not lead to an answer node if this condition is not satisfied.

Assuming wi’s in non decreasing order, (x1... xk) cannot lead to an answer node if

So, the bounding functions we use are therefore

Example:
n=6, w [1:6] = {5, 10, 12, 13, 15, 18}, m=30

6.6 Graph coloring:
Let G be a graph and m be a positive integer.

The problem is to color the vertices of G using only m colors in such a way that no two
adjacent nodes / vertices have the same color.

It is necessary to find the smallest integer m and m is referred to as the chromatic number of
G. A special case of graph coloring problem is the four color problem for planar graphs.

A graph is planar iff it can be drawn in a plane in such a way that no two edges cross each
other.

4- colour problem for planar graphs. Given any map, can the regions be colored in such a
way that no two adjacent regions have the same colour with only four colors?

A map can be transformed into a graph by representing each region of map into a node and if
two regions are adjacent, then the corresponding nodes are joined by an edge.

 For many years it was known that 5 colors are required to color any map.

After a several hundred years, mathematicians with the help of a computer showed that 4
colors are sufficient.

Example:

• Program and run m coloring algorithm using as data the complete graphs of size n=2,
3, 4, 5, 6 and 7. Let the desired number of colors be k=n and k=n/2

6.6 Hamiltonian cycles

• Let G = (V, E) be a connected graph with n vertices.

• A Hamiltonian cycle is a round path along n edges of G which visits every vertex
once and returns to its starting position.

• The tour of a traveling salesperson problem is a Hamiltonian cycle.

• A tour may exist or not.

The backtracking solution is a vector (x1… xn) where xi represents the ith visited vertex of the
cycle.

To avoid printing of the same cycle n times we require X(1) = 1 (as 128765431, 287654312,
87654312)

We compute X (k) given (x1…..xk-1) have already been chosen.

Two procedures NEXTVALUE(k) and HAMILTONIAN are used, to find the tour.

We initialize Graph (1:n, 1:n) and X(2:n)ß0, X(1)ß1 and start with HAMILTONIAN (2).

State space tree

Put the starting vertex at level 0 in the tree; call it the zero th vertex on the path.
At level 1, consider each vertex other than the starting vertex as the first vertex after the
starting one.
At level 2, consider each of these same vertices as the second vertex, and so on.
Finally, at level n-1, consider each of these same vertices as the (n-1) st vertex

1. The i th vertex on the path must be adjacent to the (i−1) st vertex on the path.

2. The (n−1) st vertex must be adjacent to the 0th vertex (the starting one).

3. The i th vertex cannot be one of the first (i−1) vertices.

Example
Let n = 8
X (1) = 1, HAMILTONIAN(2) i.e. H (2) is called, so NEXTVALUE(2) i.e. N(2) is called.
Initially X (2) = 0

 X (2) = 0+1 mod 9 = 1 but X (1) = X(2) so loop is repeated and X(2) = 2 mod 9 = 2
 X (1) ≠ X (2) and j=k=2, k < 8 so return 2
 NV(3) = 8 as Graph(2,3), Graph(2,5) Graph(2,6),Graph(2,7),Graph(2,4) are false.

Thus NV(4) = 7,NV(5) = 6,NV(6) = 5 NV(7) = 4, NV(8) = 3.
At NV (8), k = 8 and GRAPH(X (8), 1) is satisfied. Thus the cycle is printed.

6.7 Knapsack problem using Backtracking:

Given three types of items with weights and values and knapsack capacity w=5.In the above
we backtrack one step and find that new addition (2, 4; 8, 6) will also violate the knapsack
capacity. In each node left hand side of semicolon is weight chosen, right hand side of
semicolon total value and next total weight which is taken in increasing order

Exercise
1. Given three types of items with the weights and values are

T = <T1, T2, T3>
Wi = <1, 4, 5>
Vi = <4, 5, 6>

Chapter-7
 Branch and Bound

7.1Feasible Solution vs. Optimal Solution

DFS, BFS, hill climbing and best-first search can be used to solve some searching problem
for searching a feasible solution.

However, they cannot be used to solve the optimization problems for searching an optimal
solution.

7.2 The branch-and-bound strategy

This strategy can be used to solve optimization problems without an exhaustive search in the
average case. There are 2 mechanisms

 A mechanism to generate branches when searching the solution space.

 A mechanism to generate a bound so that many branches can be terminated.

 The backtracking uses a depth-first search with pruning, the branch and bound
algorithm uses a breadth-first search with pruning.

 Branch and bound uses a queue as an auxiliary data structure

7.2.1 Branch-and-bound strategy

It is efficient in the average case because many branches can be terminated very early.
Although it is usually very efficient, a very large tree may be generated in the worst
case.Many NP-hard problems can be solved by B&B efficiently in the average case;
however, the worst case time complexity is still exponential.

7.3The Branch and Bound Algorithm

i)Starting by considering the root node and applying a lower-bounding and upper-bounding
procedure to it.

ii)If the bounds match, then an optimal solution has been found and the algorithm is finished.

iii)If they do not match, then algorithm runs on the child nodes

7.4 The 0/1 knapsack problem

The 0/1 knapsack problem

Fig. The Branching Mechanism in the Branch-and-Bound Strategy to Solve 0/1 Knapsack
Problem.

How to find the upper bound?
Ans: by quickly finding a feasible solution in a greedy manner: starting from the smallest
available i,

Scanning towards the largest i’s until M is exceeded. The upper bound can be calculated.

The 0/1 knapsack problem with branch and bound

#items W v

I1 1 2

I2 2 3

I3 3 4

Given three items with knapsack capacity W=3
1) First we calculate value per weight ratio, and arrange table

#items W v Vi/wi

I1 1 2 2

I2 2 3 1.5

I3 3 4 1.3

Next, start with root node, upper bound for the root node can be computed using formula as
Ub = v+ (W-w)(vi+1/wi+1)
Ub = 0 + (3-0) * 2 = 6 (v=0, w=0, W=3, v1/w1=2) -> root node
Next, include item 1 which is indicated by the left Branch, and exclude 1 which is indicated
by right branch, shown in next slide.

W=0 V=0

 Ub=6

Upper bound calculation
Up=v+(W-w)(vi+1/wi+1)

Root node 0 calculated in previous slide

Node 1 : up=2+(3-1)*1.5=2+3=5

Node 2: up=5+(3-3)*1.3=5+0=5

Node 3= not required

Node 4= 0+(3-0)*1.5=4.5

Node 5=3+(3-2)*1.3=3+1.3=4.3

Node6=4+(3-3)*1.3=3+0=4

The 0/1 knapsack problem with branch and bound

At every level we compute the upper bound, and explore the node while selecting the item.
Finally the node with maximum upper bound is selected as an optimum solution. In the
example in previous slide, node with item 1 and 2 gives the optimum solution i.e maximum
value of 5 to the given knapsack problem.

The number above the nodes indicates the order in which the nodes are generated.

Exercise
Solve following instance of knapsack problem by using branch and bound technique:

#items W V W=16

I1 9 10

I2 6 6

I3 7 5

I4 3 1

7.5 Least Cost Branch Bound

0/1 knapsack problem-1
(p1, p2, p3, p4) = (10, 10, 12, 18)
Least-cost Branch Bound solution (w1, w2, w3, w4) = (2, 4, 6, 9) M=15, n=4

Normal knapsack 0/1 knapsack
1. w=2+4+6+9x3/9=15 1. w=2+4+6=12
 p=10+10+12+18x3/9=38 p=10+10+12=32

 2. At x1=0 2. At x1=0
w=4+6+9x5/9=15 w=4+6=10
P=10+12+18x5/9=32 p=10+12=22

3. At x1=1, x2=0 3. At x1=1,x2=0
w=2+6+9x7/9=15 w=2+6=8
p=10+12+18x7/9=36 p=10+12=22

 4. At x1=1, x2=1, x3=0 4. At x1=1, x2=1, x3=0
w=2+4+9=15 w = 2+4+9=15
p=10+10+18=38 p = 10+10+18=38

 5. At x1=1, x2=1, x3=0, x4=0 5. At x1=1, x1=1, x3=0, x4=0
w=2+4=6 w = 2+4=6
p=10+10=20 p = 10+10=20

The solutions are: 1,1,01 and 1,1,0,0
But the optimal solution is at 1,1,0,1 [max profit]

Example

N=5, m=15

w,1,w2,w3,w4,w5=4,4,5,8,9

P1,p2,p3,p4,p5=4,4,5,8,9

0/1 knapsackproblem-2

(p1, p2, p3, p4) = (4, 4, 5, 8, 9)

(w1, w2, w3, w4) = (4, 4, 5, 8, 9) M=15, n=5

Normal knapsack 0/1 knapsack

1. w=4+4+5+8x2/8=15 1. w=4+4+5=13
 p=4+4+5+8x2/8=15 p=13

 2. At x1=0 2. At x1=0
w=4+5+8X6/8=15 w=4+5=9
P=15 p=9

3. At x1=1, x2=0 3. at x1=1, x2=0
 w=4+5+8X6/8=15 w=4+5=9

 p=15 p=9

 4. At x1=1, x2=1, x3=0 4. At x1=1, x2=1, x3=0
 w=4+4+8x7/8=15 w=4+4=8
 p=15 p=8

 5. At x1=1, x2=1, x3=0, x4=0 5. At x1=1, x2=1, x3=0, x4=0
w=4+4+5+9x2/9=15 w=4+4+5=13
p=15 p=13

6.x1=1,x2=1,x3=1,x4=1,x5=0 6.x1=1,x2=1,x3=1,x4=1,x5=0
7. x1=1,x2=1,x3=1,x4=0,x5=0 7. w=13,p=13 x1=1,x2=1,x3=1,x4=0,x5=0
W=4+4+5=13
P=13

Example
N=5, m=12
(p1, p2, p3, p4, p5) = (10,1 5, 6, 8, 4)
(w1, w2, w3, w4, w5) = (4, 4, 5, 8, 9) 0/1 knapsackproblem-3

How to find the lower bound?

Ans: by relaxing our restriction from Xi = 0 (or) 1 to 0 ≤ Xi ≤ 1 (knapsack problem)

Let −
=
∑P Xi i
i

n

1
 be an optimal solution for 0/1 knapsack problem and

 − ′
=
∑P Xi
i

n

i
1

 be an optimal solution for fractional knapsack problem.

Let Y = −
=
∑P Xi i
i

n

1
, Y’ = − ′

=
∑P Xi
i

n

i
1

.

⇒ Y’ ≤ Y

How to expand the tree?
By the best-first search scheme

That is, by expanding the node with the best lower bound. If two nodes have the same lower
bounds, expand the node with the lower upper bound.

Efficiency of Branch and Bound
In many types of problems, branch and bound is faster than branching, due to the use of a
breadth-first search instead of a depth-first search

The worst case scenario is the same, as it will still visit every node in the tree

7.6 Traveling salesman problem

Step-1

The cost reduction is taking minimum value is reduced from the other values in the row.
Minimum value in the row is called row reduction. Row reduction value is the total sum of
the row reduction values in each row. After applying reduction we get the below matrix.

∞ 10 20 0 1 ∞ 10 17 0 1
13 ∞ 14 2 0 12 ∞ 11 2 0
1 3 ∞ 0 2 => A 0 3 ∞ 0 2 => 25
16 3 15 ∞ 0 15 3 12 ∞ 0
12 0 3 12 ∞ 11 0 0 12 ∞

Cumulative reduction: the sum of the row reduction value + sum of the column reduction
value cumulative reduction is 25

 I0=1

 ∞ 20 30 10 11 10 minimum of each row

15 ∞ 16 4 2 2
3 5 ∞ 2 4 2
19 6 18 ∞ 3 3

16 4 7 16 ∞ 4

i1=2 I2=3 I3=4 I4=5

Step-2

c^ (s)= c^ (R)+ A(i, j)+r

where c^ (s)= cost of function at node s

c^ (R) = lower bound of i th node in the (i, j) path

A(i,j) = value of (i, j) in the reduced cost matrix A

r=reduced cost

At node 2 path (1, 2) – make all 1st row values to ∞ 2nd column to ∞
& (2, 1) element ∞ & remaining same
At node 2 path (1, 2)

∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 11 2 0 0
0 ∞ ∞ 0 2 0
15 ∞ 12 ∞ 0 0
11 ∞ 0 12 ∞ 0
0 ∞ 0 0 0 = 0+0=0

At each and every matrix we apply row reduction & column reduction and finally finding
reduction values, which is treated as ‘small ‘r’
If there is no value for ‘r’, it takes ‘0’ value.

Step 3

At node 3 path (1, 3) make all 1st row values to ∞, 3 rd column to ∞ & (3,1) element ∞

∞ ∞ ∞ ∞ ∞
12 ∞ ∞ 2 0
∞ 3 ∞ 0 2
∞ 3 ∞ ∞ 0
11 0 ∞ 12 ∞

1st row are ∞‘s, 3 rd column are ∞‘s, (3, 1) position are ∞’s, r=11
 c^ (s)= c^ (R)+ A(i, j)+r

 c^ (3)= 25+17+11=53
Step 4

At node 4 path (1,4)
make all 1st row & 4th column & (4,1) element ∞

∞ ∞ ∞ ∞ ∞ 1st row are ∞‘s
12 ∞ 11 ∞ 0 4th column are ∞ ‘s
0 3 ∞ ∞ 2 (4, 1) position are ∞’s
∞ 3 12 ∞ 0 r=0
11 0 0 ∞ ∞ c^ (s)= c^ (R)+ A(i,j)+r

 c^ (4)= 25+0+0=25

Step 5
At node 5 path(1,5) make all I st row + 5 th column + (5,1)

∞ ∞ ∞ ∞ ∞ ∞
12 ∞ 11 2 ∞ 2
0 3 ∞ 0 ∞ 0
15 3 12 ∞ ∞ 3
∞ 0 0 12 ∞ 0
0 0 0 0 0 r=0+5=5

c^ (5)= 25+1+5=31

Min. cost = min{c^ (2), c^(3), c^(4), c^(5)}=25 at node 4 we have branch and bound.

Step 6
 At node 6 path(1,4,2) here 1,4 are visited, 1st ,4th rows are ∞’s , 2, 4 columns ∞’s (2,1)->
∞’s

∞ ∞ ∞ ∞ ∞

∞ ∞ 11 ∞ 0 2
∞ ∞ ∞ ∞ 2
∞ ∞ ∞ ∞ ∞ 3

 11 ∞ 0 ∞ ∞
 -----5
c^ (6)= 25+3+0=28

Step 7
At node 7 path(1,4,3) here 1,4 are visited, 1st ,4th rows are ∞’s , 4 ,3 rd columns ∞’s (3,1)->
∞’s

∞ ∞ ∞ ∞ ∞ ∞
12 ∞ 11 ∞ 0 0
∞ 3 ∞ ∞ 2 2
∞ ∞ ∞ ∞ ∞ ∞
11 0 ∞ ∞ ∞ 0 c^ (7)= 25+12+13=50

Step 8
At node 8 path(1,4,5) here 1,4 are visited, 1st ,4th rows are ∞’s ,4th, 5th columns ∞’s (5,1)->
∞’s

∞ ∞ ∞ ∞ ∞ ∞
12 ∞ 11 ∞ ∞ 11
0 3 ∞ ∞ ∞ 0 11+0=11
∞ ∞ ∞ ∞ ∞ ∞
∞ 0 0 ∞ ∞ 0
0 0 0 ∞ ∞

c^ (8)= 25+0+11=36

Step 9
At node 9 path(1,4,2,3), Hence 1,4 ,2 are visited, 1st ,4th , 2nd rows are ∞’s , 4 2,3 rd
columns ∞’s (3,1)-> ∞’s

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 2 2 r= 11+2=13
∞ ∞ ∞ ∞ ∞
11 ∞ ∞ ∞ ∞

11
c^ (9)= 28+11+13=52

Step 10
At node 10 path(1,4,2,5) Hence 1,4 ,2 are visited, 1st ,9th , 2nd rows are ∞’s , 4th, 2nd ,5th

columns ∞’s (5,1)-> ∞’s

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ 0 ∞ ∞

0
c^ (10)= 28+0+0=28
Here the unvisited node is 3

Step 11
At node 11 path(1,4,2,5,3) Hence 1,4 ,2,5 are visited, 1st ,4th ,2nd,5th rows are ∞’s , 4 2,5,3 rd
columns ∞’s (3,1)-> ∞’s

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

c^ (11)= 28+0+0=28
Final travelling salesman problem path is(1,4,2,5,3)

The total cost for TSP= 10+6+2+7+3=28
 10 6 2 7 3

Exercise-1
Obtain optimal solution using dynamic reduction method. Draw a portion of state space tree
using Branch & Bound technique. The cost matrix is given

 ∞ 11 10 9 6

C= 8 ∞ 7 3 4
 8 4 ∞ 4 8
 11 10 5 ∞ 5
 6 9 5 5 ∞ Answer Total=28

Exercise -2
Consider the traveling salesperson instance defined by the cost matrix

∞ 7 3 12 8
3 ∞ 6 14 9
5 8 ∞ 6 18
9 3 5 ∞ 11

 18 14 9 8 ∞

obtain the reduced cost matrix

Exercise-3

Answer: Further, this tour must be minimal since its cost equals our lower bound.
Rechecking the tour’s cost with the original cost matrix C,
We have C12 + C24 + C43 + C31 = 3 + 5 + 4 + 5 = 17.
We summarize the preceding reasoning with the decision tree.

7.7 15 puzzle problem

The 15-puzzle is invented by sam loyd in 1878. It consists of 15 numbers tiles on a square
frame with a capacity of 16 tiles. We are given an intial arrangement of the tiles and the

 To 1 2 3 4

 From 1 ∞ 3 9 7

 2 3 ∞ 6 5

 3 5 6 ∞ 6

 4 9 7 4 ∞

objective is to transform it into the goal arrangement through a series of legal moves. For
example, in the given below fig sometimes, for a given initial arrangement it may not lead to
a goal arrangement. In the following, we provide a theorem for testing whether or not a given
initial arrangement may lead to a goal arrangement.

15 puzzle problem

An initial arrangement

 Goal Arrangement

15 puzzle problem

Theorem: The goal state is reachble from the intial state iff ∑i=1
16 LESS(t) + X is even where

POSITION(t) = position number in the initial state of the tile numbered i. (POSITION(16)
denoted the position of empty spot.)

LESS(t)= the number of tiles j such that j<I and POSITION(j) > POSITION(t)
 1, if in the initial state, the empty spot is at one of the shaded positions
 0, if it is at one of the un shaded positions.

15 puzzle problem

POSITION (12) = 8

1 3 4 15

2 5 12

7 6 11 14

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

8 9 10 13

For example,
LESS(1) = 0
LESS(4) = 1
LESS(12) = 6
X = 0

Example: A state space tree organization is given in below fig

C^ (x)=f(x) + g^ (x)

C^ (x)= estimated cost at node x
f(x) = length of the path from root node to ‘x’.
g^ (x)=No. of non-blank tiles that are not in goal state

15 puzzle problem

5

Iteratio
n

Live nodes E-node

0 C(1) Node 1

1 C(2)=1+4, C(3)=1+4, C(4)=1+2, C(5)=1+4 Node 4

2 C(2)=1+4, C(3)=1+4, C(5)=1+4, C(11)=2+3,
C(12)=2+3

Node 10

3 C(2)=1+4, c(3)=1+4, c(5)=1+4, C(11)=2+3,
C(12)=2+3, c(22)=4+2, C(23)=4+0(goal node)

goal

15 puzzle problem

Exercise
Solve the following 15 puzzle problem using B&B

 1 2 3 4

5 6 11 7

9 10 8

13 14 15 12

Chapter-8

NP hard and NP Complete problems

8.1 Basic Concepts

The computing times of algorithms fall into two groups.

Group1– consists of problems whose solutions are bounded by the polynomial of small
degree.

Example – Binary search o (log n) , sorting o(n log n), matrix multiplication 0(n 2.81).

NP –HARD AND NP – COMPLETE PROBLEMS

Group2 – contains problems whose best known algorithms are non polynomial.

Example –Traveling salesperson problem 0(n22n), knapsack problem 0(2n/2) etc.
There are two classes of non polynomial time problems

1. NP- hard

2. NP-complete

A problem which is NP complete will have the property that it can be solved in polynomial
time iff all other NP – complete problems can also be solved in polynomial time.
The class NP (meaning non-deterministic polynomial time) is the set of problems that might
appear in a puzzle magazine: ``Nice puzzle.''

What makes these problems special is that they might be hard to solve, but a short answer can
always be printed in the back, and it is easy to see that the answer is correct once you see it.

Example... Does matrix A have LU decomposition?
No guarantee if answer is ``no''.

Another way of thinking of NP is it is the set of problems that can solved efficiently by a
really good guesser.
The guesser essentially picks the accepting certificate out of the air (Non-deterministic
Polynomial time). It can then convince itself that it is correct using a polynomial time
algorithm. (Like a right-brain, left-brain sort of thing.)
Clearly this isn't a practically useful characterization: how could we build such a machine?

Exponential Upper bound

Another useful property of the class NP is that all NP problems can be solved in exponential
time (EXP).
This is because we can always list out all short certificates in exponential time and check all
O (2nk) of them.
Thus, P is in NP, and NP is in EXP. Although we know that P is not equal to EXP, it is
possible that NP = P, or EXP, or neither. Frustrating!

NP-hardness

As we will see, some problems are at least as hard to solve as any problem in NP. We call
such problems NP-hard.
How might we argue that problem X is at least as hard (to within a polynomial factor) as
problem Y?
If X is at least as hard as Y, how would we expect an algorithm that is able to solve X to
behave?

NP –HARD and NP – Complete Problems Basic Concepts

If an NP-hard problem can be solved in polynomial time, then all NP-complete problems can
be solved in polynomial time.

All NP-complete problems are NP-hard, but all NP- hard problems are not NP-complete.

The class of NP-hard problems is very rich in the sense that it contains many problems from a
wide variety of disciplines.

P: The class of problems which can be solved by a deterministic polynomial algorithm.

NP: The class of decision problem which can be solved by a non-deterministic polynomial
algorithm.

NP-hard: The class of problems to which every NP problem reduces

NP-complete (NPC): the class of problems which are NP-hard and belong to NP.

NP-Competence
• How we would you define NP-Complete
• They are the “hardest” problems in NP

8.2 Deterministic and Nondeterministic Algorithms

• Algorithmswiththepropertythattheresultofeveryoperationisuniquelydefinedaretermedd
eterministic

• Such algorithms agree with the way programs are executed on a computer.
• In a theoretical framework, we can allow algorithms to contain operations whose

outcome are not uniquely defined but are limited to a specified set of possibilities.
• Themachineexecutingsuchoperationsareallowedtochooseanyoneoftheseoutcomessubje

cttoaterminationcondition.
• This leads to the concept of non deterministic algorithms.
• To specify such algorithms in SPARKS, we introduce three statements

Choice (s) ……… arbitrarily chooses one of the elements of the set S.
Failure …. Signals an unsuccessful completion.
Success: Signals a successful completion.

• Whenever there is a set of choices that leads to a successful completion then one such
set of choices is always made and the algorithm terminates.

• A non deterministic algorithm terminates unsuccessfully if and only if there exists no
set of choices leading to a successful signal.

• A machine capable of executing an on deterministic algorithm is called an un
deterministic machine.

• While non deterministic machines do not exist in practice they will provide strong
intuitive reason to conclude that certain problems cannot be solved by fast
deterministic algorithms.

Nondeterministic algorithms

A non deterministic algorithm consists of
Phase 1: guessing
Phase 2: checking

• If the checking stage of a non deterministic algorithm is of polynomial time-
complexity, then this algorithm is called an NP (nondeterministic polynomial)
algorithm.

• NP problems : (must be decision problems)
–e.g. searching, MST
Sorting
Satisfy ability problem (SAT)
travelling salesperson problem (TSP)
Example of a non deterministic algorithm
// The problem is to search for an element x //
// Output j such that A(j) =x; or j=0 if x is not in A //
j choice (1 :n)
if A(j) =x then print(j) ; success endif
print (‘0’) ; failure
complexity 0(1);

Non-deterministic decision algorithms generate a zero or one
as their output.

Deterministic search algorithm complexity. (n)

• Many optimization problems can be recast into decision problems with the property
that the decision problem can be solved in polynomial time iff the corresponding
optimization problem can.

• The decision is to determine if there is a 0/1 assignment of values to xi 1≤ i ≤ n such
that ∑pi xi ≥ R, and ∑ wi xi ≤ M, R, M are given numbers pi, wi ≥ 0, 1 ≤ i ≤ n.

• It is easy to obtain polynomial time nondeterministic algorithms for many problems
that can be deterministically solved by a systematic search of a solutions pace of
exponential size.

8.3 Satisfiability

• Letx1, x2, x3…. xn denotes Boolean variables.
• Let xi denotes the relation of xi.
• A literal is either a variable or its negation.
• A formula in the prepositional calculus is an expression that can be constructed using

literals and the operators and ^ or v.
• A clause is a formula with at least one positive literal.
• The satisfy ability problem is to determine if a formula is true for some assignment of

truth values to the variables.
• It is easy to obtain a polynomial time non determination algorithm that terminates s

successfully if and only if a given prepositional formula E(x1, x2……xn) is satiable.
• Such an algorithm could proceed by simply choosing (non deterministically) one of

the 2n possible assignment so f truth values to (x1, x2…xn) and verify that E(x1,x2…xn)
is true for that assignment.

 The satisfy ability problem

The logical formula:

 x1v x2 v x3

& -x1

& -x2

the assignment : x1 ← F , x2 ← F , x3 ← T will make the above formula true .
(-x1, -x2, x3) represents x1 ← F, x2 ← F, x3 ← T
If there is at least one assignment which satisfies a formula, then we say that this
formula is satisfiable; otherwise, it is un satisfiable.
An un satisfiable formula:

x1vx2
&x1v-x2
&-x1vx2
&-x1v-x2

Definition of the satisfiability problem:
Given a Boolean formula, determine whether this formula is satisfiable or not.
Aliteral: xi or-xi
Aclause:x1vx2v-x3Ci
A formula: conjunctive normal form (CNF)

C1&C2&…&Cm
8.4 Some NP-hard Graph Problems

ThestrategytoshowthataproblemL2isNP-hardis
1. Pick a problem L1 already known to be NP-hard.
2. Show how to obtain an instance I1 of L2m from any instance I of L1 such that from

the solution of I1 We can determine (in polynomial deterministic time)
thesolutiontoinstanceIofL1

3. Conclude from (ii) that L1L2.
4. Conclude from (1),(2), and the transitivity of that

 Satisfiability L1 L1L2
Satisfiability L2
L2is NP-hard

1. Chromatic Number Decision Problem (CNP)
a. A coloring of a graph G = (V,E) is a function f : V � { 1,2, …, k} i V
b. If (U, V) E then f(u) f(v).
c. The CNP is to determine if G has a coloring for a given K.
d. Satisfiability with at most three literals per clause chromatic number problem.

CNP is NP-hard.

2. Directed Hamiltonian Cycle(DHC)
Let G=(V,E) be a directed graph and length n=1V1
TheDHCisacyclethatgoesthrougheveryvertexexactlyonceandthenreturnstothestartingv
ertex.
The DHC problem is to determine if G has a directed Hamiltonian Cycle.
Theorem: CNF (Conjunctive Normal Form) satisfiability DHC
DHC is NP-hard.

3. Travelling Salesperson Decision Problem (TSP) :
1. The problem is to determine if a complete directed graph G = (V,E) with edge

costs C(u,v) has a tour of cost at most M.

 Theorem: Directed Hamiltonian Cycle (DHC) TSP
2. But from problem (2) satisfiability DHC Satisfiability TSP

 TSP is NP-hard.

8.5 Sum of subsets

TheproblemistodetermineifA={a1,a2,…….,an}(a1,a2,………,anarepositiveintegers) has a
subset S that sum s to a given integer M.

Scheduling identical processors

Let Pi1 ≤ i ≤m be identical processors or machines Pi.
Let Ji 1≤ i ≤ n be n jobs.
Jobs Ji requires ti processing time

A schedule S is an assignment of jobs to processors.

For each job Ji, S specifies the time interval s and the processors on which this job i is to be
processed.
A job cannot be processed by more than one process or at any given time.

The problem is to find a minimum finish time non-preemptive schedule. The finish time of S
is FT(S) = max {Ti}1≤i≤m. Where Ti is the time at which processor Pi finishes processing all
jobs (or job segments) assigned to it

An NP-hard problem L cannot be solved in deterministic polynomial time.

By placing enough restrictions on any NP hard problem, we can arrive at a polynomials
solvable problem.

Examples

CNF-Satisfy ability with at most three literals per clause is NP-hard. If each clause is
restricted to have at most two literals then CNF-satisfy ability is polynomial solvable.
Generating optimal code for a parallel assignment statement is NP-hard, However if the
expressions are restricted to be simple variables, then optimal code can be generated in
polynomial time.

Generating optimal code for level one directed a-cyclic graphs is NP-hard but optimal code
for trees can be generated in polynomial time.

Determining if a planner graph is three color able is NP-Hard

Todetermineifitistwocolorableisapolynomialcomplexityproblem.
(Weonlyhavetoseeifitisbipartite)

General definitions - P, NP, NP-hard, NP-easy, and NP-complete... - Polynomial-time
reduction • Examples of NP-complete problems

P - Decision problems (decision problems) that can be solved in polynomial time - can be
solved “efficiently”

NP - Decision problems whose “YES” answer can be verified in polynomial time, if we
already have the proof (or witness)

Co-NP - Decision problems whose “NO” answer can be verified in polynomial time, if we
already have the proof (or witness)
E.g. the satisfy ability problem (SAT) - Given a Boolean formula is it possible to assign the
input x1...x9, so that the formula evaluates to TRUE?

 If the answer is YES with a proof (i.e. an assignment of input value), then we can check
the proof in polynomial time (SAT is in NP). We may not be able to check the NO answer in
polynomial time. (Nobody really knows.)

 •NP-hard

 A problem is NP-hard iff an polynomial-time algorithm for it implies a
polynomial-time algorithm for every problem in NPNP-hard problems are at least as hard as
NP problems

•NP-complete
A problem is NP-complete if it is NP-hard, and is an element of NP (NP-easy)

Relationship between decision problems and optimization problems every optimization
problem has a corresponding decision problem

Optimization: minimize x, subject to constraints yes/no: is there a solution, such that x is less
than c? an optimization problem is NP-hard (NP-complete) if its corresponding decision
problem is NP-hard (NP-complete)

Polynomial-time reductions

How to know another problem, A, is NP-complete?
To prove that A is NP-complete, reduce a known NP-complete problem to A

Requirement for Reduction
Polynomial time
YES to A also implies YES to SAT, while
NO to A also implies No to SAT (Note that A must also have short proof for YES answer)

 An example of reduction 3CNF

3SAT: is a boolean formula in 3CNF has a feasible assignment of inputs so that it evaluates
to TRUE?
reduction from 3SAT to SAT (3SAT is NP-complete)

Examples of NP-complete problems

 Vertex cover
 Independent set
 Set cover
 Steiner tree

Vertex cover
 Given a graph G = (V, E), find the smallest number of vertexes that cover each edge

 Decision problem: is the graph has a vertex cover of size K?

Reduction

 Vertex cover

 An example of the constructive graph

Vertex cover
We must prove: the graph has a n+2c vertex cover, if and only if the 3SAT is satisfiable (to
make the two problem has the same YES/NO answer!)

 Vertex cover
- If the graph has a n+2c vertex cover
1) There must be 1 vertex per variable gadget, and 2 per clause gadget
2) In each clause gadget, set the remaining one literal to be true

• Vertex cover
 If the 3SAT is satisfiable
1) Choose the TURE literal in each variable gadget
2) Choose the remaining two literal in each clause gadget

Independent set

Independent set: a set of vertices in the graph with no edges between each pairof nodes.
given a graph G=(V,E), find the largest independent set
reduction from vertex cover:

Independent set

If G has a vertex cover S, then V/S is an independent set
Proof: consider two nodes in V/S: if there is an edge connecting them, then one of them must
be in S, which means one of them is not in V/S
If G has an independent set I, then V/I is a vertex cover
Proof: consider one edge in G:
If it is not covered by any node in V/I, then its two end vertices must be
both in I, which means I is not an independent set

Given a universal set U, and several subsets S1...Sn
find the least number of subsets that contains each elements in the universal set
vertex cover is a special case of set cover:

1) the universal set contains all the edges
2) each vertex corresponds to a subset, containing the edges it covers

 Steiner tree
 Given a graph G = (V, E), and a subset C of V
 find the minimum tree to connect each vertex in C reduction

 Steiner tree
- G’ is a complete graph
- for every node u in G, create a node u in G’
- for every edge (u, v) in G, create a node (u, v) in G’
- in G’, every node (u, v) is connected to u and v with distance 1
- in G’, every node u and v is connected with distance 1
- other edges in G’ are of distance 2

 In the Steiner tree problem for G’, choose C to be the set of all nodes (u, v)
 G’ has a minimum Steiner tree of close m+k-1 iff G has a minimum vertex cover of size k

Examples of NP-complete problems

Index

A

Algorithm 5

B

Binary Search 25

Breadth First Search 93

Background 102

D

Dijkstras algorithm 64

G

Genetic algorithm 43

H

Hamiltonian Cycles 108

J

Job Sequence Problem 47

K

Kruskal’s Algorithm 56

M

Merge sort 28

N

NP hardness 127

NP competence 128

P

Program 5

Prince Algorithm 52

Q

Quick sort 32

Queens Problem 103

S

Space Complexity 12

Selection sort 36

Spanning tree 51

T

Time complexity 13

Author Biography

 K.Raghava Rao, received B.E and M.Tech and Ph.D in CSE from MP and RVP
and Mahatma Gandhi(Kasividyapeeth) Universities in the years 1995, 2005 and
2009 respectively. He is having 13 years experience in teaching UG and PG
Engineering Students and 3 years Industry experience in Singapore. He worked in
IBM, NEC and System Access MNCs at Singapore. Developed Banking Solutions as
software engineer.

He is Microsoft Certified Engineer, Java Certified and did specialized course on Wireless
Sensor Networks at IIT Kanpur. He published two books, "Core Java-Programming Simple"
and "Introduction to Data Mining-A Practical Approach". His research interests are Data
Mining, Wireless Sensor Networks and Sensor Web Services. Currently, he is doing DST
funded project on Wireless Sensor Networks. He is having several Publications at National
and International journals with good impact factor. He is a recipient of best research
paper award, best teacher award and outstanding academic excellence award from DST,
KL University and SRR Educational Society respectively.

